
CS 105 April 6, 2020

Lecture 17: Virtual Memory



Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory. 
• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data



Multiprocessing: The Reality
• Computer runs many processes simultaneously
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)



Virtual Memory Goals
• Isolation: don’t want different 

process states collided in 
physical memory

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resourcesCode

Data

Stack

Heap



Address Translation

MMU
Virtual Address invalid

Exception
Physical Address

Data

Code
Data

Stack

Heap



Base-and-Bound

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Base

Bound



Base-and-Bound

vaddr vaddr > Bound
Exception

Data

paddr = vaddr + Base

Code
Data

Stack

Heap

MMU
Base Bound



Exercise 1: Base-and-Bound
Assume that you are currently executing a process P with 
Base 0x1234 and Bound 0x100. 
• What is the physical address that corresponds to the 

virtual address 0x47?
• What is the physical address that corresponds to the

virtual address 0x123?



Evaluating Base-and-Bound
• Isolation: don’t want different 

process states collided in 
physical memory

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Segmentation

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

CBase

SBound

CBound

SBase

HBase
HBound

DBase
DBound



Segmentation

vaddr

offset > Bound[idx]
or access not allowed

Exception

Data

paddr = Base[idx] + offset

Code
Data

Stack

Heap

MMU
Base Bound Access

R,W
R,W
R,W
R,X

idx offset



Exercise 2: Segmentation
Assume that you are currently executing a process P with 
the following segment table:

• What is the physical address that corresponds to the 
virtual address 0x000?

• What is the physical address that corresponds to the
virtual address 0xC47?

Base Bound Access
0x4747 0x80 R,W
0x2424 0x40 R,W
0x0023 0x80 R,W
0x1000 0x100 R,X



Evaluating Segmentation
• Isolation: don’t want different 

process states collided in 
physical memory

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Paging

Code
Data

Stack

Heap

Physical Memory

Virtual Memory

Frame 0
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 6
Frame 7
Frame 8
Frame 9

Frame 10
Frame 11
Frame 12
Frame 13
Frame 14
Frame 15
Frame 16
Frame 17

Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7



Paging

vaddr
access not allowed

Exception

Data

paddr =

Code
Data

Stack

Heap

MMU
Frame Access
47 R,W
NULL R,W
13 R,W
42 R,X

page# offset

Frame[page#] offset

…



Memory as a Cache
• each page table entry has 

a valid bit
• for valid entries, frame 

indicates physical address 
of page in memory

• a page fault occurs when 
a program requests a page 
that is not currently in 
memory
• takes time to handle, so 

context switch
• evict another page in memory 

to make space (which one?)

MMU
v Frame Access
1 47 R,W
0 NULL R,W
0 13 R,W
1 42 R,X

…



Thrashing
• working set is the collection of a pages a process requires 

in a given time interval
• if it doesn't fit in memory, program will thrash



Exercise 3: Paging
Assume that you are currently executing a process P with 
the following page table on a system with 256 byte pages:

• What is the physical address that corresponds to the 
virtual address 0xF947?

• What is the physical address that corresponds to the
virtual address 0xF700?

v Frame Access
1 0x47 R,W
1 0x24 R,W
0 NULL R,W
0 0x23 R,X

248
247

250
249

…
…



Evaluating Paging
• Isolation: don’t want different 

process states collided in 
physical memory

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication

• Utilization: want best use of 
limited resource

• Virtualization: want to create 
illusion of more resources



Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. Do you have any comments or suggestions for future 
classes?


