
CS 105 March 30, 2020

Lecture 15: OS and Processes

Online Course Logisitics
• Weekly discussion sections on

Wednesdays
• 8:45-10am PDT, 1:15-2:30pm PDT,

2:45-4pm PDT

• 2 recorded lectures per week
• ~75 mins each
• will include attention questions and

exercises
• must be completed before that

week's discussion section

• Weekly assignments

• Office hours and mentor
sessions over zoom

• Use email/piazza/slack for
communications

Intro to Operating Systems
• the operating system is a piece of software that manages

a computer's resources for its users and their applications
• Examples: OSX, Windows, Ubuntu, iOS, Android, Chrome OS

• core OS functionality is implemented by the OS kernel

• resource allocation
• isolation
• communication
• access control

• multiprocessing
• virtual memory
• reliable networking
• virtual machines

• user interface
• file I/O
• device management
• process control

Operating System Goals
• Reliability: they operating system should do what you want

• Availability: the operating system should respond to user input

• Security: the system should not be (easily) corrupted by an
attacker

• Portability: the operating system should be easy to move to
new hardware platforms

• Performance: the operating system should impose minimal
overhead, the UI should be responsive

• Adoption: people should use the operating system

Exercise 1: Operating Systems
What is an example of an operating system as:

a) referee
b) illusionist
c) glue

Try to be specific with your examples

Processes
• A program is a file containing code + data that describes

a computation
• A process is an instance of a running program.

• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing
• Computer runs many processes simultaneously
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently
• Process executions interleaved (multitasking)
• Register values for nonexecuting processes saved in memory
• Address spaces managed by virtual memory system

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Process Control Block (PCB)
• To implement a context switch, OS maintains a PCB for

each process containing:
• process table, which contains information about the process (id,

user, privilege level, arguments, status)\
• location of executable on disk
• file table
• register values (general-purpose registers, float registers, pc,

eflags…)
• memory state
• scheduling information

... and more!

Context Switching
• Processes are managed by a shared chunk of memory-

resident kernel code
• Important: the kernel code is not a separate process, but rather

code and data structures that the OS uses to manage all processes
• Control flow passes from one process to another via a

context switch
Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)
2. Schedule next process for execution

Memory

Multiprocessing: The (Traditional) Reality

CPU

Registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

1. Save current registers to memory (in PCB)
2. Schedule next process for execution
3. Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

• Multicore processors
• Multiple CPUs on single chip
• Share main memory (and some of the caches)
• Each can execute a separate process

• Scheduling of processors onto cores done by kernel

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU

Registers

Interrupts (Asynchronous Exceptions)
• Caused by events external to the processor

• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

Exceptions
• An exception is a transfer of control to the OS kernel in

response to some event (i.e., change in processor state)
• Kernel is the memory-resident part of the OS
• Examples of events: timer interrupt, Divide by 0, page fault, I/O

request completes, typing Ctrl-C
User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

0
1
2 ...

n-1

Exception Tables
• Each type of event has a

unique exception number k

• k = index into exception table
(a.k.a. interrupt vector)

• Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Synchronous Exceptions
• Caused by events that occur as a result of executing an

instruction:
• Traps

• Intentional
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (unrecoverable),

floating point exceptions
• Either re-executes faulting (“current”) instruction or aborts

• Aborts
• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program

Exercise 2: Context Switching
1) Explain the steps that an operating system goes

through when the CPU receives an interrupt.

2) A hardware designer argues that there are now enough
on-chip transistors to build a CPU with 1024 integer
registers and 512 floating point registers. As a result,
the compiler should almost never need to store anything
on the stack. As a new operating systems expert, give
your opinion of this design.

Process Life Cycle

Init

Runnable Running

Terminated

Stopped

fork

Creating Processes
• Parent process creates a new running child process by calling
fork

• int fork(void)
• Returns 0 to the child process, child’s PID to parent process
• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s virtual address space.
• Child gets identical copies of the parent’s open file descriptors
• Child has a different PID than the parent

• fork is interesting (and often confusing) because
it is called once but returns twice

fork Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

} fork.c

¢ Call once, return twice
¢ Duplicate but separate

address space
§ x has a value of 1 when

fork returns in parent and
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in

both parent and child

execve: Loading and Running Programs
• int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:
• Executable file filename

• Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

• …with argument list argv
• By convention argv[0]==filename

• …and environment variable list envp
• “name=value” strings (e.g., USER=droh)
• getenv, putenv, printenv

• Overwrites code, data, and stack
• Retains PID, open files and signal context

• Called once and never returns
• …except if there is an error

Linux Process Hierarchy

25

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…
……

Note: you can view the
hierarchy using the Linux
pstree command

pstree on pom-itb-cs2

26

[ebac2018@pom-itb-cs2 ~]$ pstree
systemd─┬─NetworkManager───2*[{NetworkManager}]

…
├─attacklab-repor
├─attacklab-reque
├─attacklab-resul
├─attacklab.pl
…
├─crond
├─cupsd
…
├─sshd─┬─sshd───sshd───bash───pstree
│ └─28*[sshd───sshd───sftp-server]
├─systemd-journal
├─systemd-logind
├─systemd-udevd
…
└─xdg-permission-───2*[{xdg-permission-}]

Process Life Cycle

Init

Runnable Running

Terminated

Stopped

fork

scheduled

interrupt, yield

fork Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

} fork.c

¢ Call once, return twice
¢ Duplicate but separate

address space
§ x has a value of 1 when

fork returns in parent and
child

§ Subsequent changes to x
are independent

¢ Shared open files
§ stdout is the same in

both parent and child

¢ Concurrent execution
§ Can’t predict execution

order of parent and child

Modeling fork with Process Graphs
• A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program:
• Each vertex is the execution of a statement
• a -> b means a happens before b
• Edges can be labeled with current value of variables
• printf vertices can be labeled with output
• Each graph begins with a vertex with no inedges

• Any topological sort of the graph corresponds to a
feasible total ordering.
• Total ordering of vertices where all edges point from left to right

Process Graph Example
int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
return 0;

}

/* Parent */
printf("parent: x=%d\n", --x);
return 0;

}

x=2 2

main fork printf

printf

x=1 x=0 0
Parent

Child

fork.c

Interpreting Process Graphs
• Original graph:

• Relabeled graph:

a b c

e
a b e c

Feasible total ordering:

a e cb

Infeasible total ordering:

x=2 2

main fork printf

printf

x=1 x=0 0
Parent

Child

fork Example: Two consecutive forks
void fork1()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Which of these outputs are feasible? L0
L1
Bye
Bye
L1
Bye
Bye

L0
Bye
L1
Bye
L1
Bye
Bye

Exercise 3: Forks and Scheduling
• For each of the following programs, draw the process

graph and then determine which of the possible outputs
are feasible
void fork2(){

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

void fork3(){
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}
L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

Exercise 3a
void fork2()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

L0
L1
Bye
Bye
L2
Bye

L0
Bye
L1
Bye
Bye
L2

Which of these outputs are feasible?

Exercise 3b
void fork3()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

print
fL0

L2

Bye

L1 Bye

printf
Bye

L0
Bye
L1
L2
Bye
Bye

L0
Bye
L1
Bye
Bye
L2

Which of these outputs are feasible?

Process Life Cycle

Init

Runnable Running

Terminated

Stopped

fork

scheduled

interrupt, yield

wait, I/O operationprocess or
I/O completion

Reaping Children

37

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATIS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

• See textbook for details

wait Example

38

void fork6() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

exit(0);
} else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Reaping Children

39

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

Process Life Cycle

Init

Runnable Running

Terminated

Stopped

fork

scheduled

interrupt, yield

return from main,
exit, terminated

wait, I/O operationprocess or
I/O completion

Terminating Processes
• Process becomes terminated for one of three reasons:

• Returning from the main routine
• Calling the exit function
• Receiving a signal whose default action is to terminate

• void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer value

from the main routine

• exit is called once but never returns.

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. Do you have any comments or suggestions for future
classes?

