Lecture 4: Operations on Values

CS 105

February 3, 2020

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Boolean Algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic---encode "True" as 1 and "False" as 0

General Boolean algebras

Bitwise operations on words

	01101001	01101001		01101001		
&	01010101	<u> 01010101</u>	^	01010101	~	01010101
	01000001	01111101		00111100		10101010

• How does this map to set operations?

Exercise: Boolean algebras

- Assume: a = 01101101, b = 01010101
- What are the results of evaluating the following Boolean operations?
 - ~a
 - ~b
 - a & b
 - a | b
 - a ^ b
 - ((a ^ b) & ~b) | (~(a ^ b) & b)

Example: Using Boolean Operations

void f(int *x, int*y){
 *y = *x ^ *y;
 *x = *x ^ *y;
 *y = *x ^ *y;
}

What does this function do?

Bitwise vs Logical Operations in C

- Apply to any "integral" data type
 - int, unsigned, long, short, char
- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, ||, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Exercise: Bitwise vs Logical Operations

- Assume char data type (one byte)
 - •~0x41
 - •~0x00
 - •~~0x41
 - 0x69 & 0x55
 - 0x69 | 0x55
 - !0x41
 - !0x00
 - !!0x41
 - 0x69 && 0x55
 - 0x69 || 0x55

Bit Shifting

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

Undefined Behavior if you shift amount < 0 or ≥ word size

- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift: Fill with 0's on left
 - Arithmetic shift: Replicate most significant bit on left

Choice between logical and arithmetic depends on the type of data

Example: Bit Shifting

- Unsigned
 - 0x41 << 4
 - 0x41 >> 4
- Signed
 - 41 << 4
 - 41 >> 4
 - -41 << 4
 - -41 >> 4

Addition Example

 Compute 5 + 1 assuming all ints are stored as three-bit unsigned values

 Compute -3 + 1 assuming all ints are stored as three-bit signed values (two's complement)

Addition and Subtraction

- Usual addition and subtraction
 - Like you learned in second grade, only binary
 - Same for unsigned and signed
 - ... but error conditions differ

Error Cases

• Unsigned addition:

•
$$x + {}^{u}_{w} y = \begin{cases} x + y & \text{(normal)} \\ x + y - 2^{w} & \text{(overflow)} \end{cases}$$

- overflow has occurred iff $x + u_w^u y < x$
- Signed addition:

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & \text{(positive overflow)} \\ x + y & \text{(normal)} \\ x + y + 2^{w} & \text{(negative overflow)} \end{cases}$$

• overflow has occurred iff
$$x > 0$$
 and $y > 0$ and $x +_w^t y < 0$
or $x < 0$ and $y < 0$ and $x +_w^t y > 0$

Flags

- A flag is a one-bit value: 1 is "set" and 0 is "unset"
- Flags record conditions of previous arithmetic operations
 - C: The carry-out flag from the last bit; indicates unsigned overflow
 - V: Indicates if the result, interpreted as a signed value, is erroneous. For addition, this means that the signs of the operands agree and the result has a different sign
 - Z: Set if the result is zero
 - N: The sign bit of the result; indicates a negative signed result

Multiplication Example

 Compute 5 * 3 assuming all ints are stored as three-bit unsigned values

 Compute -3 * 3 assuming all ints are stored as three-bit signed values (two's complement)

Multiplication

Usual Multiplication

- Like elementary school, only in binary
- Product can be two words long; it may be truncated to one word
- Bit level equivalence for unsigned and signed

Error Cases

- Unsigned multiplication:
 - $x *^u_w y = (x \cdot y) \mod 2^w$

- Signed multiplication:
 - $x *_w^t y = U2T((x \cdot y) \mod 2^w)$

Multiplying with Shifts

C uses << and >>. The arithmetic/logical choice is made according the the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical right shift.

We can multiply (often faster than with the processor's multiply instruction) with shifts.

• $x \times 24 = x \times 32 - x \times 8$ = (x << 5) - (x << 3)

Most compilers will generate this code automatically.

Signed Division by a Power of 2

- x >> k computes x / 2^{k} , rounded towards $-\infty$
- C on Intel processors rounds towards 0
 - -11 >> 2 == -3, but -11/4 == -2
- Solution: If x < 0, add 2^k -1 before shifting
 - Why does this work?

if (x < 0)
 x += (1 << k) - 1;
return x >> k;