
CS 105 February 3, 2020

Lecture 4: Operations on Values

Arithmetic Logic Unit (ALU)
• circuit that performs bitwise operations and arithmetic on

integer binary types

Boolean Algebra
• Developed by George Boole in 19th Century
• Algebraic representation of logic---encode “True” as 1 and

“False” as 0

And Or

Not Exclusive-Or (Xor)

3

General Boolean algebras
• Bitwise operations on words

• How does this map to set operations?

01101001
& 01010101

01000001

01101001
| 01010101

01111101

01101001
^ 01010101

00111100
~ 01010101

1010101001000001 01111101 00111100 10101010

4

Exercise: Boolean algebras
• Assume: a = 01101101, b = 01010101

• What are the results of evaluating the following Boolean
operations?

• ~a

• ~b
• a & b

• a | b

• a ^ b

• ((a ^ b) & ~b) | (~(a ^ b) & b)

Example: Using Boolean Operations

• What does this function do?

void f(int *x, int*y){
*y = *x ^ *y;
*x = *x ^ *y;
*y = *x ^ *y;

}

Bitwise vs Logical Operations in C
• Apply to any “integral” data type

• int, unsigned, long, short, char

• Bitwise Operators &, |, ~, ^
• View arguments as bit vectors
• operations applied bit-wise in parallel

• Logical Operators &&, ||, !
• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1
• Early termination

7

Exercise: Bitwise vs Logical Operations
• Assume char data type (one byte)

• ~0x41
• ~0x00
• ~~0x41

• 0x69 & 0x55
• 0x69 | 0x55

• !0x41
• !0x00
• !!0x41

• 0x69 && 0x55
• 0x69 || 0x55

8

Bit Shifting
• Left Shift: x << y

• Shift bit-vector x left y positions
• Throw away extra bits on left
• Fill with 0’s on right

• Right Shift: x >> y
• Shift bit-vector x right y positions
• Throw away extra bits on right
• Logical shift: Fill with 0’s on left
• Arithmetic shift: Replicate most

significant bit on left

Choice between logical and
arithmetic depends on the
type of data

9

Undefined Behavior if you
shift amount < 0 or ≥ word
size

Example: Bit Shifting
• Unsigned

• 0x41 << 4
• 0x41 >> 4

• Signed
• 41 << 4
• 41 >> 4
• -41 << 4
• -41 >> 4

Addition Example
• Compute 5 + 1 assuming all ints are stored as three-bit

unsigned values

• Compute -3 + 1 assuming all ints are stored as three-bit
signed values (two's complement)

Addition and Subtraction

14

• Usual addition and subtraction
• Like you learned in second grade, only binary
• Same for unsigned and signed
• … but error conditions differ

Error Cases
• Unsigned addition:

• 𝑥 +#$ 𝑦 = '
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 − 2# (over4low)

• overflow has occurred iff 𝑥 +#$ 𝑦 < 𝑥

• Signed addition:

• 𝑥 +#7 𝑦 = 8
𝑥 + 𝑦 − 2# (positive over4low)
𝑥 + 𝑦 (normal)
𝑥 + 𝑦 + 2# (negative over4low)

• overflow has occurred iff 𝑥 > 0 and y > 0 and 𝑥 +#7 𝑦 < 0
or 𝑥 < 0 and y < 0 and 𝑥 +#7 𝑦 > 0

Flags

16

• A flag is a one-bit value: 1 is “set” and 0 is “unset”
• Flags record conditions of previous arithmetic operations

• C: The carry-out flag from the last bit; indicates unsigned overflow
• V: Indicates if the result, interpreted as a signed value, is

erroneous. For addition, this means that the signs of the operands
agree and the result has a different sign

• Z: Set if the result is zero
• N: The sign bit of the result; indicates a negative signed result

Multiplication Example
• Compute 5 * 3 assuming all ints are stored as three-bit

unsigned values

• Compute -3 * 3 assuming all ints are stored as three-bit
signed values (two's complement)

Multiplication

18

• Usual Multiplication
• Like elementary school, only in binary
• Product can be two words long; it may be truncated to one word
• Bit level equivalence for unsigned and signed

Error Cases
• Unsigned multiplication:

• 𝑥 ∗#$ 𝑦 = 𝑥 ⋅ 𝑦 mod 2#

• Signed multiplication:
• 𝑥 ∗#7 𝑦 = 𝑈2𝑇(𝑥 ⋅ 𝑦 mod 2#)

Multiplying with Shifts

20
CS 105, Computer Systems Pomona College

Shifts, continued

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

• x ⇥ 24 = x ⇥ 32 � x ⇥ 8
= (x << 5) � (x << 3)

Most compilers will generate this code automatically.

25

Signed Division by a Power of 2
• x >> k computes x / 2k, rounded towards

• C on Intel processors rounds towards 0
• -11 >> 2 == -3, but -11/4 == -2

• Solution: If x < 0, add 2k-1 before shifting
• Why does this work?

�1

if (x < 0)
x += (1 << k) – 1;

return x >> k;

21

