Lecture 4: Operations on Values

CS 105 February 3, 2020

e ——
Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on

iInteger binary types
Integer Integer
Operand Operand
E A \/ B _/.
Status
Status
Opcode Y

Integer
Result

Boolean Algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic---encode “True” as 1 and

“False” as 0
And &[0 1 or | [0 1
0|0 O 0|10 1
1(0 1 1 (1
Not ~ Exclusive-Or (Xor) 0 1
0|1 0|0 1
110 111 O

General Boolean algebras

- Bitwise operations on words

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 =~ 01010101

01000001 01111101 00111100 10101010

- How does this map to set operations?

Exercise: Boolean algebras

- Assume:a = 01101101, b = 01010101

- What are the results of evaluating the following Boolean
operations?

>» O O ©O

(a " b) & ~b) | (~(a "~ b) & b)

Example: Using Boolean Operations

void f(int *x, int*y){

*Y — *X 2 *Y;
*X = *X 2 *Y;
*Y = *X 2 *Y;

}

- What does this function do?

Bitwise vs Logical Operations in C
- Apply to any “integral” data type

- 1nt, unsigned, long, short, char

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |1, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return O or 1
- Early termination

Exercise: Bitwise vs Logical Operations

- Assume char data type (one byte)

- ~0x41
- ~@x00
- ~~0Qx41

- Ox69 & 0Ox55
- Ox69 | Ox55

- 10x41
- 10x00
- 110x41

- Ox69 && 0Ox55
- Ox69 || Ox55

—— e S
Bit Shifting

- Left Shift: x << y
- Shift bit-vector x left y positions | Undefined Behavior if you
- Throw away extra bits on left shift amount < 0 or = word
- Fill with 0’s on right size

- Right Shift: x >> y
- Shift bit-vector x right y positions

Choice between logical and
arithmetic depends on the
type of data

- Throw away extra bits on right
- Logical shift: Fill with 0’s on left

- Arithmetic shift: Replicate most
significant bit on left

——
Example: Bit Shifting

- Uns1igned
- Ox41 << 4
- Ox41 >> 4

- S1gned
4] << 4
41 >> 4
- -4]1 << 4
- =41 >> 4

————
Addition Example

- Compute 5 + 1 assuming all ints are stored as three-bit
unsigned values

- Compute -3 + 1 assuming all ints are stored as three-bit
signed values (two's complement)

———— N
Addition and Subtraction

- Usual addition and subtraction
- Like you learned in second grade, only binary
- Same for unsigned and signed
- ... but error conditions differ

Error Cases

- Unsigned addition:

xX+y (normal)

[] u —
X twy {x + y — 2% (overflow)

- overflow has occurred iff x +1, vy < x

- Signed addition:

(x + y — 2% (positive overflow)
e x+Ly=<x+y (normal)
x+y+ 2% (negative overflow)

\

- overflow has occurred iff x >0andy > 0and x +,y <0
orx<0Oandy<Oandx+{y>0

Flags

- Aflag is a one-bit value: 1 is “set” and 0 is “unset”
- Flags record conditions of previous arithmetic operations

- C: The carry-out flag from the last bit; indicates unsigned overflow

- V: Indicates if the result, interpreted as a signed value, is
erroneous. For addition, this means that the signs of the operands
agree and the result has a different sign

- Z: Set if the result is zero

- N: The sign bit of the result; indicates a negative signed result

Multiplication Example

- Compute 5 * 3 assuming all ints are stored as three-bit
unsigned values

- Compute -3 * 3 assuming all ints are stored as three-bit
signed values (two's complement)

Multiplication

- Usual Multiplication
- Like elementary school, only in binary
- Product can be two words long; it may be truncated to one word
- Bit level equivalence for unsigned and signed

Error Cases

- Unsigned multiplication:
- x* y = (x-y)mod 2%

- Signed multiplication:
« x xt, vy = U2T((x - y) mod 2")

R
Multiplying with Shifts

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

e X X24= xx32 — xXxX%X8
= (x <<5) — (x <<3)

Most compilers will generate this code automatically.

Signed Division by a Power of 2

-x >> k computes x / 2k rounded towards — OO

- C on Intel processors rounds towards 0
- =11 >> 2 == -3, but -11/4 == -2

- Solution: If x < 0, add 2%-1 before shifting
- Why does this work?

if (x < 0)
Xx += (1 << k) - 1;
return x >> k;

