
CS 105 January 29, 2020

Lecture 3: Floats and Structs

Representing Integers
• unsigned:

• signed (two's complement):

Note: to compute –x for a signed int x, flip all the bits, then add 1

UnsignedValue.x/ D
w�1X

j D0

xj � 2j

SignedValue.x/ D �xw�1 � 2w�1 C
w�2X

j D0

xj � 2j

CS 105, Computer Systems Pomona College

Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.

16

Example: Three-bit integers

3
CS 105, Computer Systems Pomona College

Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15

FRACTIONAL NUMBERS

Fractional binary numbers
• What is 1011.1012?

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number: ∑"#$%& (𝑏" ⋅ 2")

• • •

Exercise: Fractional Binary Numbers
• Translate the following fractional numbers to their binary

representation
• 5 3/4
• 2 7/8
• 1 7/16

• Observations
• Divide by 2 by shifting right (unsigned)
• Multiply by 2 by shifting left
• Numbers of form 0.111111…2 are just below 1.0

• 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

Representable Numbers
• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations
• Value Representation

• 1/3 0.0101010101[01]…2
• 1/5 0.001100110011[0011]…2
• 1/10 0.0001100110011[0011]…2

• Limitation #2
• Just one setting of binary point within the w bits
• Limited range of numbers (very small values? very large?)

• Numerical Form: −1 . ⋅ 𝑀 ⋅ 20
• Sign bit 𝑠 determines whether number is negative or positive
• Significand 𝑀 normally a fractional value in range [1.0,2.0)
• Exponent 𝐸 weights value by power of two

• Encoding:

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒"$5 …𝑒5𝑒7 − (2"$5 − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓:$5 …𝑓5𝑓7

Floating Point Representation

𝑠 exp = 𝑒"$5 …𝑒5𝑒7 frac = 𝑓:$5 …𝑓5𝑓7

bias

Float (32 bits):
• k = 8, n = 23
• bias = 127
Double (64 bits)
• k=11, n = 52
• bias = 1023

Exercise: Floats
• What fractional number is represented by the bytes

0x0000c03e?

Normalized and Denormalized

−1 . ⋅ 𝑀 ⋅ 20

Normalized Values
• exp is neither all zeros nor all ones
• normal case
• exponent is defined as E = 𝑒"$5 …𝑒5𝑒7 − bias, where
bias = 2" − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 𝑀 = 1. 𝑓:$5𝑓:$F …𝑓7

• Denormalized Values
• exp is either all zeros or all ones
• if all zeros: E = 1 − bias and 𝑀 = 0. 𝑓:$5𝑓:$F …𝑓7
• if all ones: infinity (if f is all zeros) or NaN

s exp frac

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

Floating Point in C
• C Guarantees Two Levels

•float single precision
•double double precision

• Conversions/Casting
• Casting between int, float, and double changes bit
representation
• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion, as long as int has ≤ 53 bit word size

• int → float
• Will round

STRUCTS

Structs
• Heterogeneous records, like Java objects
• Example:

• Usage:

• Pointers:

struct rec c;
c.a[0] = 42;
c.next = NULL;

struct rec *p = malloc(sizeof(struct rec));
p->a[0] = 42;
p->next = NULL;

p->next is an
bbreviation for
(*p).next

struct rec {
int a[4];
size_t i;
struct rec *next;

};

void set_val(struct rec *r, int val){
while (r) {
int i = r->i;
r->a[i] = val;
r = r->next;

}
}

Following Linked List
• C Code

Element i

r

i next

0 16 20 28

a

struct rec {
int a[4];
size_t i;
struct rec *next;

};

Structure Representation

• Structure represented as block of memory
• Big enough to hold all of the fields

• Fields ordered according to declaration
• Even if another ordering could yield a more compact representation

• Compiler determines overall size + positions of fields
• Machine-level program has no understanding of the structures in the

source code

a

r

i next

0 16 24 32

struct rec {
int a[4];
size_t i;
struct rec *next;

};

Structures & Alignment
• Unaligned Data

• Aligned Data
• Primitive data type requires K bytes
• Address must be multiple of K

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {
char c;
int i[2];
double v;

};

Alignment Principles
• Aligned Data

• Primitive data type requires K bytes
• Address must be multiple of K
• Required on some machines; advised on x86-64

• Motivation for Aligning Data
• Memory accessed by (aligned) chunks of 4 or 8 bytes (system

dependent)
• Inefficient to load or store datum that spans quad word boundaries
• Virtual memory trickier when datum spans 2 pages

• Compiler
• Inserts gaps in structure to ensure correct alignment of fields

Specific Cases of Alignment (x86-64)
• 1 byte: char, …

• no restrictions on address
• 2 bytes: short, …

• lowest 1 bit of address must be 02

• 4 bytes: int, float, …
• lowest 2 bits of address must be 002

• 8 bytes: double, long, char *, …
• lowest 3 bits of address must be 0002

• 16 bytes: long double (GCC on Linux)
• lowest 4 bits of address must be 00002

struct S1 {
char c;
int i[2];
double v;

};

Satisfying Alignment with Structures
• Within structure:

• Must satisfy each element’s alignment requirement
• Overall structure placement

• Each structure has alignment requirement K
• K = Largest alignment of any element

• Initial address & structure length must be multiples of K
• Example:

• K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Arrays of Structures
• Overall structure length multiple of K
• Satisfy alignment requirement

for every element

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •
a+0 a+24 a+48 a+72

struct S1 {
char c;
int i[2];
double v;

};

Saving Space
• Put large data types first

• Effect (K=4)

struct S2 {
char c;
int i;
char d;

};

struct S3 {
int i;
char c;
char d;

};

c i3 bytes d 3 bytes

ci d 2 bytes

