Lecture 3: Floats and Structs

CS 105

Representing Integers

- unsigned:

$$
\operatorname{UnsignedValue}(x)=\sum_{j=0}^{w-1} x_{j} \cdot 2^{j}
$$

- signed (two's complement):

$$
\operatorname{SignedValue}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{j=0}^{w-2} x_{j} \cdot 2^{j}
$$

Note: to compute -x for a signed int x , flip all the bits, then add 1

$$
x+\sim x=11 \ldots 1=-1, \text { so } x+(\sim x+1)=0
$$

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11... 1 .
- Signed values range between TMin and TMax.

This representation of signed values is called two's complement.

FRACTIONAL NUMBERS

Fractional binary numbers

-What is 1011.101_{2} ?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i}\left(b_{k} \cdot 2^{k}\right)$

Exercise: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
- $53 / 4$
- $27 / 8$
- $17 / 16$
- Observations
- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{\mathrm{k}}$
- Other rational numbers have repeating bit representations
- Value Representation
- $1 / 3 \quad 0.0101010101[01] \ldots 2$
- $1 / 50.001100110011[0011] \ldots{ }^{2}$
- $1 / 100.0001100110011[0011]$...2
- Limitation \#2
- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range $[1.0,2.0$)
- Exponent E weights value by power of two
- Encoding:

$$
\begin{array}{|l|l|l|}
\hline s & \exp =e_{k-1} \ldots e_{1} e_{0} & \text { frac }=f_{n-1} \ldots f_{1} f_{0} \\
\hline
\end{array}
$$

- s is sign bit s
- \exp field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$-bias
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

Double (64 bits)

- $\mathrm{k}=11, \mathrm{n}=52$
- bias = 1023

Exercise: Floats

- What fractional number is represented by the bytes $0 x 0000 c 03 e$?

Normalized and Denormalized

s	\exp	frac

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

Normalized Values

- exp is neither all zeros nor all ones
- normal case
- exponent is defined as $\mathrm{E}=e_{k-1} \ldots e_{1} e_{0}$ - bias, where bias $=2^{k}-1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M=1 . f_{n-1} f_{n-2} \ldots f_{0}$
- Denormalized Values
- exp is either all zeros or all ones
- if all zeros: $\mathrm{E}=1$ - bias and $M=0 . f_{n-1} f_{n-2} \ldots f_{0}$
- if all ones: infinity (if f is all zeros) or NaN

Visualization: Floating Point Encodings

Floating Point in C

- C Guarantees Two Levels
-float single precision
-double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round

STRUCTS

Structs

- Heterogeneous records, like Java objects
- Example: struct rec $\{$

```
        int a[4];
    size_t i;
    struct rec *next;
```

\};

- Usage:

$$
\begin{aligned}
& \text { struct rec c } \\
& \text { c.a[0] }=42 \\
& \text { c.next }=N U L L
\end{aligned}
$$

$\mathrm{p}->$ next is an bbreviation for (*p).next

- Pointers:

```
struct rec *p = malloc(sizeof(struct rec));
p->a[0] = 42;
p->next = NULL;
```


Following Linked List

```
struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
```


Element i

```
void set_val(struct rec *r, int val){
    while (r) {
        int i = r->i;
        r->a[i] = val;
        r = r->next;
    }
}
```


Structure Representation

```
struct rec {
    int a[4];
    size_t i;
    struct rec *next;
```


- Structure represented as block of memory
- Big enough to hold all of the fields
- Fields ordered according to declaration
- Even if another ordering could yield a more compact representation
- Compiler determines overall size + positions of fields
- Machine-level program has no understanding of the structures in the source code

Structures \& Alignment

- Unaligned Data

c	$\mathrm{i}[0]$	$\mathrm{i}[1]$	V	
$\mathrm{p} \quad \mathrm{p}+1$	$\mathrm{p}+5$	$\mathrm{p}+9$	$\mathrm{p}+17$	

- Aligned Data
- Primitive data type requires K bytes
- Address must be multiple of K

Multiple of 8
Multiple of 8

Alignment Principles

- Aligned Data
- Primitive data type requires K bytes
- Address must be multiple of K
- Required on some machines; advised on x86-64
- Motivation for Aligning Data
- Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
- Inefficient to load or store datum that spans quad word boundaries
- Virtual memory trickier when datum spans 2 pages
- Compiler
- Inserts gaps in structure to ensure correct alignment of fields

Specific Cases of Alignment (x86-64)

- 1 byte: char, ...
- no restrictions on address
- 2 bytes: short, ...
- lowest 1 bit of address must be 02
- 4 bytes: int, float, ...
- lowest 2 bits of address must be 002
- 8 bytes: double, long, char *, ...
- lowest 3 bits of address must be 0002
- 16 bytes: long double (GCC on Linux)
- lowest 4 bits of address must be 00002

Satisfying Alignment with Structures

- Within structure:
- Must satisfy each element's alignment requirement
- Overall structure placement

```
struct S1 {
```

 char c;
 int i[2];
 double v;
 \} ;

- Each structure has alignment requirement K
- K = Largest alignment of any element
- Initial address \& structure length must be multiples of K
- Example:
- $K=8$, due to double element

Arrays of Structures

- Overall structure length multiple of K
- Satisfy alignment requirement for every element

```
struct S1 {
    char c;
    int i[2];
    double v;
};
```

$a[0]$	$a[1]$	$a[2]$	
$a+0$	$a+24$	$a+48$	$a+72$

Saving Space

- Put large data types first
struct $S 2\{$
char $\mathrm{c} ;$
int i;
char di
$\} ;$

```
struct S3 {
    int i;
    char c;
    char d;
};
```

- Effect (K=4)

C	3 bytes	i	d	3 bytes

