Lecture 2: Representing Integers

CS 105 January 27, 2020

Abstraction

The C Language

- Syntax like Java: declarations, if, while, return
- Data and execution model are "closer to the machine"
- More power and flexibility
- More ways to make mistakes
- Sometimes confusing relationships
- Pointers!!

Memory: A (very large) array of bytes

- An index into the array is an address, location, or pointer
- Often expressed in hexadecimal
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address
- Larger words (32- or 64-bit) are stored in contiguous bytes
- The address of a word is the address of its first byte
- Successive addresses differ by word size

	bytes	32-bit words	34-bit words
$\begin{aligned} & 0 \times 001 \mathrm{f} \\ & 0 \times 001 \mathrm{e} \\ & 0 \times 001 \mathrm{~d} \\ & 0 \times 001 \mathrm{l} \end{aligned}$			$\begin{gathered} \text { addr }= \\ 0 \times 0018 \end{gathered}$
		addr $=$	
		0x001c	
$\begin{aligned} & 0 \times 001 \mathrm{~b} \\ & 0 \times 001 \mathrm{a} \\ & 0 \times 0019 \\ & 0 \times 0018 \end{aligned}$		$\begin{gathered} \text { addr }= \\ 0 \times 0018 \end{gathered}$	
$\begin{aligned} & 0 \times 0018 \\ & 0 \times 0017 \end{aligned}$		$\begin{gathered} \text { addr }= \\ 0 \times 0014 \end{gathered}$	$\begin{aligned} & \text { addr }= \\ & 0 \times 0010 \end{aligned}$
0×0016			
$\begin{aligned} & 0 \times 0015 \\ & 0 \times 0014 \end{aligned}$			
0x0013		$\begin{gathered} \text { addr }= \\ 0 \times 0010 \end{gathered}$	
0x0012			
0x0011			
0×0010		$\begin{aligned} & \text { addr }= \\ & 0 \times 000 \mathrm{c} \end{aligned}$	$\begin{gathered} \text { addr }= \\ 0 \times 0008 \end{gathered}$
$0 \times 000 \mathrm{f}$ $0 \times 000 \mathrm{e}$			
$0 \times 000 \mathrm{~d}$			
0x000c			
$0 \times 000 \mathrm{~b}$		$\begin{gathered} \text { addr }= \\ 0 \times 0008 \end{gathered}$	
0x000a			
0×0009 0×0008			
0×0007		$\begin{gathered} \text { addr }= \\ 0 \times 0004 \end{gathered}$	$\begin{gathered} \text { addr }= \\ 0 \times 0000 \end{gathered}$
0x0006			
0x0005			
0x0004			
0×0003		$\begin{gathered} \text { addr }= \\ 0 \times 0000 \end{gathered}$	
0×0002			
0×0001			

Representing Unsigned Integers

- Think of bits as the binary representation

$$
\operatorname{UnsignedValue}(x)=\sum_{j=0}^{w-1} x_{j} \cdot 2^{j}
$$

- If you have w bits, what is the range?

Endianness

BIG ENDIAR - The way people always broke their egga in the Lilliput land

LITTLE ENDIAN - The way the king then
ordeved the people to break their egge

Unsigned Integers in C

C Data Type	Size (bytes)
unsigned short	2
unsigned int	4
unsigned long	8

- What about casting?
- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types truncates the bits
- What about negative numbers?

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue(w) - K
- Option 3: one's complement
- Flip every bit to get the negation

Representing Signed Integers

- Option 4: two's complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative

$$
\operatorname{SignedValue}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{j=0}^{w-2} x_{j} \cdot 2^{j}
$$

- Exercise: Assume C short (2 bytes)
- What is the binary representation for 47 ?
- What is the hex representation for 47 ?
- What is the binary representation for -47 ?
- What is the hex representation for -47

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11...1.
- Signed values range between TMin and TMax.

This representation of signed values is called two's complement.

Two's Complement Signed Integers

- "Signed" does not mean "negative"
- High order bit is the sign bit
- To negate, complement all the bits and add 1
- Arithmetic is the same as unsigned-same circuitry
- Error conditions and comparisons are different

Important Signed Numbers

	8	16	32	64
TMax	$0 \times 7 F$	$0 x 7 F F F$	$0 \times 7 F F F F F F F$	$0 x 7 F F F F F F F F F F F F F F F$
TMin	0×80	0×8000	0×80000000	$0 \times 8000000000000000$
0	0×00	0×0000	0×00000000	$0 \times 0000000000000000$
-1	$0 x F F$	$0 x F F F F$	$0 x F F F F F F F F$	$0 x F F F F F F F F F F F F F F F F$

Unsigned and Signed Integers

- Use w-bit words; w can be 8, 16, 32, or 64
- The bit sequence $b_{w-1} \ldots b_{1} b_{0}$ represents an integer

	unsigned	signed
value	$\sum_{i=0}^{w-1} b_{i} 2^{i}$	$-b_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} b_{i} 2^{i}$
smallest	0	-2^{w-1}
largest	$2^{w}-1$	$2^{w-1}-1$

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types truncates the bits
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)

Exercise: Numeric Data Representations

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int $\mathrm{x}=-17$; short sy $=-3$;
- Complete the following table

Expression	Decimal	Binary
	-6	
$\longrightarrow \times$		101010
(unsigned int) x		
(int) sy		
TMax		
TMin		

