Lecture 2: Representing Integers

CS 105 January 27, 2020

Abstraction

The C Language

- Syntax like Java: declarations, if, while, return

- Data and execution model are “closer to the
machine’
- More power and flexibility
- More ways to make mistakes
- Sometimes confusing relationships
- Pointers!!

Memory: A (very large) array of bytes

32-bit 34-bit

- An index into the array is an address,
location, or pointer

- Often expressed in hexadecimal

- We speak of the value in memory at an
address

- The value may be a single byte ...

- ... or a multi-byte quantity starting at that
address

- Larger words (32- or 64-bit) are stored
In contiguous bytes

- The address of a word is the address of its
first byte

- Successive addresses differ by word size

0x001f
0x001e
0x001d
0x001c

0x001b
0x001a
0x0019
0x0018
0x0017
0x0016
0x0015
0x0014
0x0013
0x0012
0x0011
0x0010
0x000f
0x000e
0x000d
0x000c
0x000b
0x000a
0x0009
0x0008
0x0007
0x0006
0x0005
0x0004
0x0003
0x0002
0x0001
0x0000

bytes words words
addr =
0x001c
addr =
addr = | | 0x0018
0x0018
addr =
0x0014
addr =
addr = 0x0010
0x0010
addr =
0x000c
addr =
addr = 0x0008
0x0008
addr =
0x0004
addr =
addr= | | 0x0000
0x0000

Representing Unsigned Integers

- Think of bits as the binary representation
w—1

UnsignedValue(x) = Z X .27
j=0

- If you have w bits, what is the range?

Endianness

BIC ENDIAN - The wvay
prcple alwayx broke
thelir egue in the
Liliiput land

LITTLE ENDIAN - The
way the king then
ordered the pecple to
break their egge

Unsigned Integers in C

C Data Type Size (bytes)

unsigned short 2
unsigned int 4
unsigned long 8

- What about casting?

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types truncates the bits

- What about negative numbers?

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude

- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue(w) — K

- Option 3: one’s complement
- Flip every bit to get the negation

Representing Signed Integers

- Option 4: two’s complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative

w—2
SignedValue(x) = —xyp—1 - 2% 1 + Z X .2/
J=0
- Exercise: Assume C short (2 bytes)
- What is the binary representation for 477
- What is the hex representation for 477

- What is the binary representation for -477?
- What is the hex representation for -47

Example: Three-bit integers

unsigned

111
110
101
100
011
010
001
000

OFR NWDOI O N

signed

011
010
001
000
111
110
101
100

= The high-order bit is the sign bit.

e The largest unsigned value is

11...1, UMax.

e The signed value for —1 is always
11...1.

e Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

Two’s Complement Signed Integers

- “Signed” does not mean “negative”

- High order bit is the sign bit

- To negate, complement all the bits and add 1
- Arithmetic is the same as unsigned—same circuitry

- Error conditions and comparisons are different

Important Signed Numbers

8 | 6 | 32 | 64

OX7FFF
0x8000
0x0000
OXFFFF

OX7FFFFFFF
0x80000000
0Xx00000000
OXFFFFFFFF

OX7FFFFFFFFFFFFFFF
0x800000000VVVL
0X00000000000VVL
OXFFFFFFFFFFFFFFFF

Unsigned and Signed Integers

- Use w-bit words; w can be 8, 16, 32, or 64
- The bit sequence b, ... by by represents an integer

unsigned signed
value ;i;;ol b; 2! —by—12%"1 + fi:} b; 2!
smallest 0 —2w—1

largest 2W —1 AR |

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types truncates the bits

- Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

Exercise: Numeric Data Representations

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table

__Expression | Decimal | Binary
e 6
e 101010
(unsigned int) x
(int) sy
TMax
TMin

