
CS 105 January 22, 2020

Lecture 1: Introduction to Computer Systems

Abstraction

• Example 1: Is x2 ≥ 0?
• Floats: Yes!

• Ints:
• 40000 * 40000 ➙ 1600000000
• 50000 * 50000 ➙ ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:

• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

Correctness

Performance

• Hierarchical memory organization
• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms

Security

void admin_stuff(int authenticated){
if(authenticated){

// do admin stuff
}

}

int dontTryThisAtHome(char * user_input, int size) {
char data[size];
int ret = memcpy(*user_input, data);
return ret;

}

Bits
• a bit is a binary digit that can have two possible values

• can be physically represented with a two state device

Bits

Storing bits
• Static random access memory (SRAM):

stores each bit of data in a flip-flop, a
circuit with two stable states

• Dynamic Memory (DRAM): stores each
bit of data in a capacitor, which stores
energy in an electric field (or not)

• Magnetic Disk: regions of the platter are
magnetized with either N-S polarity or
S-N polarity

• Optical Disk: stores bits as tiny
indentations (pits) or not (lands) that
reflect light differently

• Flash Disk: electrons are stored in one of
two gates separated by oxide layers

Bytes and Memory
• A byte is a unit of eight bits
• Memory is an array of bytes

• An index into the array is an address, location, or pointer
• Often expressed in hexadecimal

• We speak of the value in memory at an address
• The value may be a single byte …
• … or a multi-byte quantity starting at that address

Binary Numbers

4211
= 4 ⋅ 10& + 2 ⋅ 10) + 1 ⋅ 10* + 1 ⋅ 10+

= 4211

1011
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+

= 11

Binary Numbers

Hexidecimal Numbers
• Use digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
• Compute numbers base 16

• one byte is two digits in hex

1011
= 1 ⋅ 2& + 0 ⋅ 2) + 1 ⋅ 2* + 1 ⋅ 2+

= 11

= 1 ⋅ 10& + 0 ⋅ 10) + 1 ⋅ 10* + 1 ⋅ 10+
= 1011

= 1 ⋅ 16& + 0 ⋅ 16) + 1 ⋅ 16* + 1 ⋅ 16+
= 4113

ASCII characters

x86 instructions
Machine code bytes Assembly

foo:
movl $0xFF001122, %eax
addl %ecx, %edx
xorl %es1, %es1
pushl %ebx
movl 4(%esp), %ebx
leal (%eax,%ecx,2), %exi
cmpl %eax, %ebx
jnae foo
retl

B8 22 11 00 FF
01 CA
31 F6
53
8B 5C 24 04
8D 34 48
39 C3
72 EB
C3

Bits and Bytes Require Interpretation
00000000 00110101 00110000 00110001
might be interpreted as

• The integer 3,485,74510

• A floating point number close to 4.884569 x 10-39

• The string “105”
• A portion of an image or video
• An address in memory

(or 0x00353031)

Information is Bits + Context

C

#include<stdio.h>

int main(int argc, char** argv){
printf("Hello world!\n");
return 0;

}

Example Data Representations

C Data Type x86-64

char 1

short 2

int 4

long 8

float 4

double 8

pointer 8

Memory Access in C
int x; // an integer
int *p; // a pointer to an integer

// normal initialization:
x = 0;

// silly, but illustrative:
p = &x; // & means “address of”
*p = 0; // * means “memory at address”

• & and * are inverses of one another
• prefix vs infix operators
• x occupies 4 bytes in memory; p occupies 8

Arrays
• Contiguous block of memory
• Pointer to start, then indexed by element size

• Indices start at zero

• ary[k] is the same as *(ary+k)
• Location of ary+k depends on the type of array elements

int *p[47];

• Array of pointers … or … pointer to an array??

• It’s an array of 47 pointers
• p[3] is the fourth pointer in the array p
• p[3] is the base of an array
• p[3][6] is the integer at position 6 in the array p[3]

Arrays and Pointers Combined

What is printed?

int a[100];
int *p[47];

p[3] = a+12;
for (int i = 0; i < 100; i++){

a[i] = i;
}

printf(“%d\n”, p[3][4]);

Structs
• Heterogeneous records, like objects
• Typical linked list declaration:

• Usage:

• Usage with pointers:

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

How many bytes are
allocated for c?
for p?

p->next is an
bbreviation for
(*p).next

Compilation
• gcc –o hello hello.c

Pre-
processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modified
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

#include<stdio.h>

int main(int argc,
char ** argv){

printf("Hello
world!\n");

return 0;
}

…
int printf(const char *

restrict,
...)

__attribute__((__format_
_ (__printf__, 1, 2)));
…
int main(int argc,

char ** argv){

printf("Hello
world!\n");

return 0;
}

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
leaq L_.str(%rip), %rax
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rax, %rdi
movb $0, %al
callq _printf
xorl %ecx, %ecx
movl %eax, -20(%rbp)
movl %ecx, %eax
addq $32, %rsp
popq %rbp
retq

55
48 89 e5
48 83 ec 20
48 8d 05 25 00 00 00
c7 45 fc 00 00 00 00
89 7d f8
48 89 75 f0
48 89 c7
b0 00
e8 00 00 00 00
31 c9
89 45 ec
89 c8
48 83 c4 20
5d
c3

Running a Program
• ./hello

A Computer System

Main
memory

I/O
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

LOGISTICS

Course staff
Prof. Eleanor Birrell
Edmunds 221

Research in security and privacy
OH: T 1:30-3:30pm, W 7-9pm

Jenna
Brandt

Joe
Brennan

Gabriel
da Motta

Adam
Lininger-White

Douglas
Webster

The Course in a Nutshell
• Textbook

• Bryant and O’Halloran, Computer Systems: A Programmer’s
Perspective, third edition, Pearson, 2016 (Recommended)

• Classes
• Monday and Wednesday, 1:15-2:30 or 2:45-4pm in Edmunds 101

• Labs
• Mondays 7-8:15 in Edmunds 229/219
• Start Monday! Be sure to have an account and password

Mentor Session Schedule (Edmunds 227)
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
LAB 7-9pm 7-9pm 7-9pm 2-4pm 2-4pm 2-4pm

Grading
• Assignments

• Introduced during labs, Due Fridays at 5pm
• Tremendous fun, work in pairs
• 45% of the grade
• Seven late days

• Midterm exam
• March 11
• 20% of the grade each

• Final exam
• Thursday, May 7 or Tuesday, May 12 or Friday, May 15 (2-5pm)
• 30% of the grade

• Participation
• 5% of the grade

Course website
https://www.cs.pomona.edu/classes/cs105

• All information is on the course website
• All course materials get posted on the course website
• Links from the course page:

• Piazza, for questions and discussion

• Lab assistants and mentors, schedule

• Submission site

• Grading site

http://www.cs.pomona.edu/classes/cs105/2019sp/

