CS105 – Computer Systems

Fall 2020

Problem Session 1: Binary Numbers and Operations

Wednesday, August 26, 2020

1. Consider a **5-bit** unsigned integer representation. Fill in the empty boxes in the following table. Addition and subtraction should be performed based on the rules for 5-bit, unsigned integer arithmetic.

Expression	Decimal Representation	Binary Representation			
Expression	Decimal Representation	Binary Representation			
13	13				
21	21				
n/a		01010			
n/a		10011			
13 & 21					
13 && 21					
13 21					
13 21					
13 ^ 21					
~13					
!21					
13 << 3					
21 >> 1					
13 + 21					
13 * 21					

2. In the following questions assume the variables a and b are unsigned 32-bit integers. Also assume that UMAX is the maximum unsigned 32-bit integer, UMIN is the minimum integer, and W is one less than the word length (i.e., W = 31, since we're dealing with 32-bit integers).

Match each of the descriptions on the left with a line of code on the right (write in the letter).

1. a

g.
$$(a << 4) + (a << 1)$$

3.	For each of the	following	expressions,	write an	equivalent	expression	using	only the	allowed	opera-
	tions:									

(a) Write an expression that evaluates to $x \mid y$ using only the operations &, ~

(b) Write an expression that evaluates to x - y using only the operations &, \sim

(c) Write an expression that evaluates to x == y using the operations &, |, ^, ~, &&, ||, ! Recall that x == y evaluates to 1 if the values are equal and 0 otherwise.