CS105 - Computer Systems

Problem Session 1: Binary Numbers and Operations

Wednesday, August 26, 2020

1. Consider a 5-bit unsigned integer representation. Fill in the empty boxes in the following table. Addition and subtraction should be performed based on the rules for 5-bit, unsigned integer arithmetic.

Expression	Decimal Representation	Binary Representation	
13	13		
21	21		
n/a		01010	
n/a		10011	
13 \& 21			
13 \&\& 21			
13 \| 21			
13 \|	21		
13 - 21			
~ 13			
! 21			
$13 \ll 3$			
21 >> 1			
$13+21$			
$13 * 21$			

2. In the following questions assume the variables a and b are unsigned 32-bit integers. Also assume that UMAX is the maximum unsigned 32 -bit integer, UMIN is the minimum integer, and W is one less than the word length (i.e.., $\mathrm{W}=31$, since we're dealing with 32 -bit integers).

Match each of the descriptions on the left with a line of code on the right (write in the letter).

1. a
a. ~(~a | (b ~ UMAX))

b. $\left.\quad\left(\left(a^{\wedge} \mathrm{b}\right) \&{ }^{\sim} \mathrm{b}\right) \mid\left(\sim^{\left(a^{\wedge}\right.} \mathrm{b}\right) \& b\right)$
2. ${ }^{2}$
c. $1+(\mathrm{a} \ll 3)+\sim \mathrm{a}$
3. $\mathrm{a} \& \mathrm{~b}$
d. $(a \ll 2)+a$
e. a - (UMIN + UMAX)
4. $\mathrm{a} * 5$
\qquad f. a >> 2
5. a/4

$$
\text { g. }(\mathrm{a} \ll 4)+(\mathrm{a} \ll 1)
$$

3. For each of the following expressions, write an equivalent expression using only the allowed operations:
(a) Write an expression that evaluates to $\mathrm{x} \mid \mathrm{y}$ using only the operations \& , ~
(b) Write an expression that evaluates to x ~ y using only the operations \& , ~
(c) Write an expression that evaluates to $\mathrm{x}==\mathrm{y}$ using the operations \& , |, ~, ~, \&\&, ||, ! Recall that $\mathrm{x}=\mathrm{y}$ evaluates to 1 if the values are equal and 0 otherwise.
