
CS 105 Fall 2020

Lecture 23: Networking

Physical Layer
• Twisted Pair

• Coaxial

• Fiber

• Radio

Data Link Layer
• DSL

• Ethernet

• WiFi (802.11)

• 3G
• LTE
• 5G

Twisted Pair

Coaxial

Fiber

Radio

main
memory

I/O
bridgeMI

ALU

register fileCPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Data Link Layer
• Each host has one or more network adapter (aka NIC)

• handles particular physical layer and protocol
• Each network adapter has a media access control (MAC)

address
• unique to that network instance

• Messages are organized as packets

Example: Ethernet
• Developed 1976 at Xerox
• Simple, scales pretty well
• Very successful, still in

widespread use

• Example address:
b8:e3:56:15:6a:72

• Carrier sense: listen before
you speak

• Multiple access: multiple
hosts on network

• Collision detection: detect
and respond to cases where
two messages collide

payload

destination address

source address

type

checksum

Example: Ethernet

• Carrier sense: broadcast if wire is available
• In case of collision: stop, sleep, retry

• sleep time is determined by collision number
• abort after 16 attempts

Example: Ethernet
Advantages

• completely decentralized
• inexpensive

• no state in the network
• no arbiter
• cheap physical links

Disadvantages

• endpoints must be trusted
• data is available for all to

see
• can place ethernet card in

promiscuous mode and
listen to all messages

Bridged Ethernet

• Spans building or campus

• Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Exercise 1: Data Link Layer
• Which of the following are examples of data link layer

protocols?
a) 4G LTE
b) Ethernet
c) Fiber
d) WiFi (802.11)
e) IP

Network Layer
• There are lots of lots of local area networks (LANs)

• each determines its own protocols, address format, packet format
• What if we wanted to connect them together?

• physically connected by specialized computers called routers
• routers with multiple network adapters can translate
• standardize address and packet formats

• This is a internetwork
• aka wide-area network (WAN)
• aka internet

host host host... host host host...

WAN WAN
router router router

LAN 1 LAN 2

Logical Structure of an internet

• Ad hoc interconnection of networks
• No particular topology
• Vastly different router & link capacities

• Send packets from source to destination by hopping through
networks
• Router forms bridge from one network to another
• Different packets may take different routes

router

router

router
router

router

router

host
host

application message (payload)

v Dest. Port #

offset

source address

header checksumTTL protocol

destination address

options

Internet Protocol (IP)
• Initiated by the DoD in
60s-70s

• Currently transitioning
(very slowly) from
IPv4 to IPv6

• Example address:
128.84.12.43

• interoperable
• network dynamically
routes packets from
source to destination

TOS total lengthIHL

identification fs

Aside: IPv4 and IPv6
• The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
• Intended as the successor to IPv4

• As of November 2019, majority of Internet traffic still carried
by IPv4
• 24-29% of users access Google services using IPv6.

• We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

LAN2

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

Transferring internet Data Via Encapsulation

Routing

Exercise 2: IP addresses
• What is the current IP address assigned to your

computer?

Transport Layer

Transport Layer
• Clients and servers communicate by sending streams of

bytes over a connection.

• A transport layer endpoint is identified by an IP address
and a port, a 16-bit integer that identifies a process
• Ephemeral port: Assigned automatically by client kernel when

client makes a connection request.
• Well-known port: Associated with some service provided by a

server (e.g., port 80 is associated with Web servers)

Client Server

Sockets
• What is a socket?

• IP address + port
• To the kernel, a socket is an endpoint of communication
• To an application, a socket is a file descriptor that lets the

application read/write from/to the network
• Note: All Unix I/O devices, including networks, are modeled as files

• Clients and servers communicate with each other by
reading from and writing to socket descriptors

• The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Anatomy of a Connection
• A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
• (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Well-known Ports and Service Names
• Popular services have permanently assigned well-known

ports and corresponding well-known service names:
• echo server: 7/echo
• ssh servers: 22/ssh
• email server: 25/smtp
• Web servers: 80/http

• Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

5. Stop accepting
messages

4. Stop sending
messages

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets Interface
socket socket

bind

read

writeread

write

closeclose

listen

acceptconnect

TCP Only

Sockets Interface: socket
• Clients and servers use the socket function to create a

socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_DGRAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates transport protocol

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Socket Address Structures
• Internet-specific socket address:

• Must cast (struct sockaddr_in *) to (struct sockaddr *)
for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {
uint16_t sin_family; /* Protocol family (always AF_INET) */
uint16_t sin_port; /* Port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Sockets Interface: bind
• A server uses bind to ask the kernel to associate the

server’s socket address with a socket descriptor:

• The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

• Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Transport Layer Segments
• Sending application:

• specifies IP address and port
• uses socket bound to source

port

• Transport Layer:
• breaks application message

into smaller chunks
• adds transport-layer header to

each message to form a
segment

• Network Layer (IP):
• adds network-layer header to

each datagram

application message (payload)

transport-layer header

Source IP Dest. IP

application message (payload)

Source Port # Dest. Port #

length of seg. checksum

Should the transport layer guarantee
packet delivery?

Exercise 3: Transport-Layer Guarantees
• Which argument makes more sense? Should the

transport layer guarantee packet delivery?

Transport Layer Protocols
User Datagram Protocol (UDP)

• unreliable, unordered
delivery

• connectionless

• best-effort, segments might
be lost, delivered out-of-
order, duplicated

• reliability (if required) is the
responsibility of the app

Transmission Control Protocol (TCP)

• reliable, inorder delivery

• connection setup

• flow control

• congestion control

UDP: tradeoffs
• fast:

• no connection setup
• no rate-limiting

• simple:
• no connection state
• small header (8 bytes)

• (possibly) extra work
for applications
• reordering
• duplicate suppression
• handle missing packets

Transport Protocols by Application
Application Application-Level

Protocol
Transport Protocol

Name Translation DNS Typically UDP
Routing Protocol RIP Typically UDP
Network Management SNMP Typically UDP
Remote File Server NFS Typically UDP
Streaming multimedia (proprietary) UDP or TCP
Internet telephony (proprietary) UDP or TCP
Remote terminal access Telnet TCP
File Transfer (S)FTP TCP
Email SMTP TCP
Web HTTP(S) TCP

The Big Picture

Hardware and Software Interfaces

Exercise 4: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture?

3. Do you have any comments or suggestions for future
classes?

