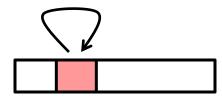
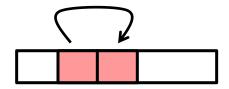

Lecture 13: Caches (cont'd)

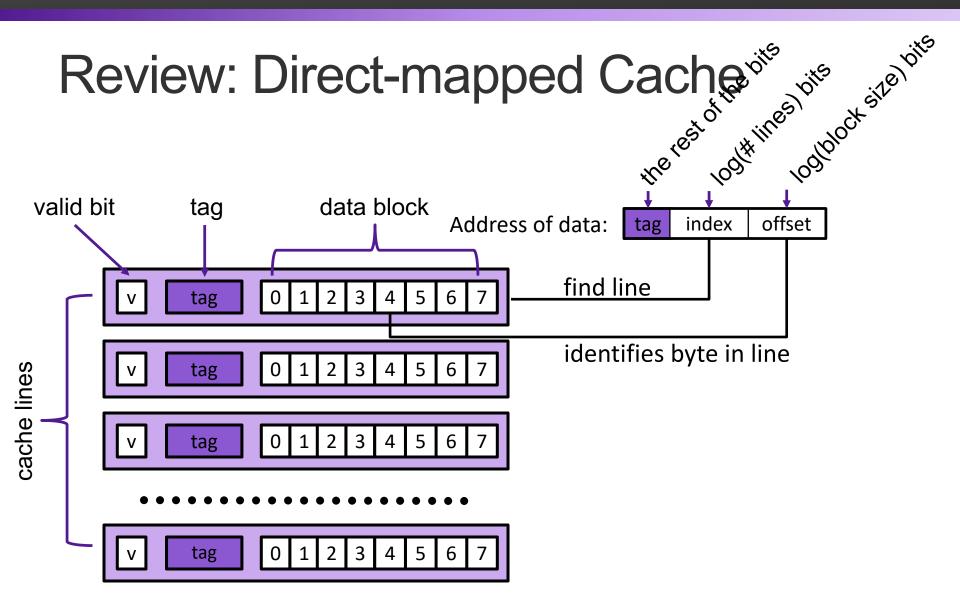
CS 105

Fall 2020

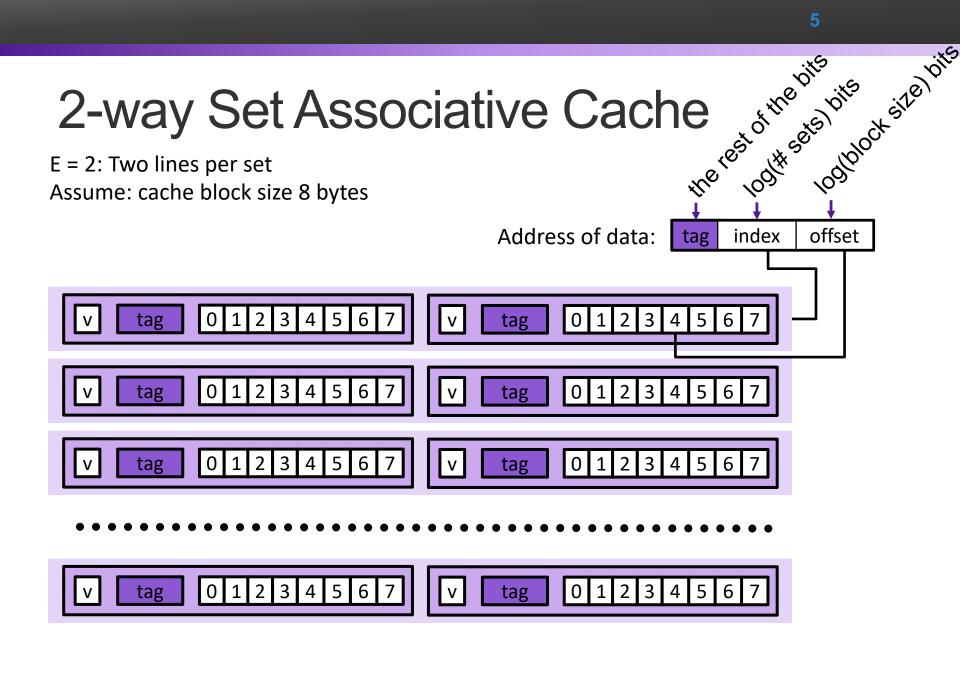
Review: Memory Hierarchy


Review: Principle of Locality


Programs tend to use data and instructions with addresses near or equal to those they have used recently


- Temporal locality:
 - Recently referenced items are likely to be referenced again in the near future

Spatial locality:


 Items with nearby addresses tend to be referenced close together in time

How well does this take advantage of spacial locality? How well does this take advantage of temporal locality?

Exercise 1: 2-way Set Associative Cache

nory
18
17
16
15
14
13

Access	tag	idx	off	h/m
rd 0x00				
rd 0x04				
rd 0x14				
rd 0x00				
rd 0x04				
rd 0x14				

	S	et 0	Cach	e se	et 1
	Valid Tag	Data Block		Valid Tag	Data Block
Line 0			Line 0		
Line 1			Line 1		

		Se	t C)				Se	t 1		
	Li	ne 0		Li	ne 1		Li	ne 0		Li	ne 1
0	0	47 48	0	1	47 48	0	0	47 48	0	1	47 48

Exercise 1: 2-way Set Associative Cache

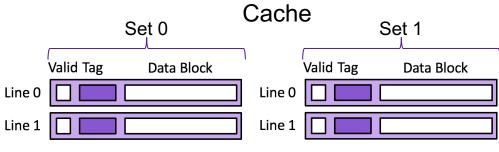
Mer	nory
0x14	18
0x10	17
0x0c	16
0x08	15
0x04	14
0x00	13

Access	tag	idx	off	h/m
rd 0x00	0000	0	000	m
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	m
rd 0x00	0000	0	000	h
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	h
rd 0x20	0010	0	000	m

	Se	et O	Cach	e Se	et 1
	Valid Tag	Data Block		Valid Tag	Data Block
Line 0			Line 0		
Line 1			Line 1		

	Set 0									Se	t 1		
	Li	ne	0		Li	ne	1		Li	ne 0		Li	ne 1
0	0	47	48	0	1	47	48	0	0	47 48	0	1	47 48
1	0	13	14										
				1	1	17	18						

Eviction from the Cache

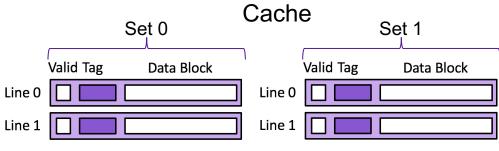

On a cache miss, a new block is loaded into the cache

- Direct-mapped cache: A valid block at the same location must be evicted—no choice
- Associative cache: If all blocks in the set are valid, one must be evicted
 - Random policy
 - FIFO
 - LIFO
 - · Least-recently used; requires extra data in each set
 - Most-recently used; requires extra data in each set
 - Most-frequently used; requires extra data in each set

Exercise 2: Cache Eviction

Memory								
0x14	18							
0x10	17							
0x0c	16							
0x08	15							
0x04	14							
0x00	13							

Access	tag	idx	off	h/m
rd 0x00	0000	0	000	m
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	m
rd 0x00	0000	0	000	h
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	h
rd 0x20	0010	0	000	m


Assume 8 byte data blocks, LRU eviction

	Set 0									Se	t 1		
	Li	ne	0		Li	ne	1		Li	ne 0		Li	ne 1
0	0	47	48	0	1	47	48	0	0	47 48	0	1	47 48
1	0	13	14										
				1	1	17	18						

Exercise 2: Cache Eviction

Memory								
0x14	18							
0x10	17							
0x0c	16							
0x08	15							
0x04	14							
0x00	13							

Access	tag	idx	off	h/m
rd 0x00	0000	0	000	m
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	m
rd 0x00	0000	0	000	h
rd 0x04	0000	0	100	h
rd 0x14	0001	0	100	h
rd 0x20	0010	0	000	m

Assume 8 byte data blocks, LRU eviction

	Set 0							Set 1					
	Li	ne	0		Line 1				Li	ne 0		Li	ne 1
0	0	47	48	0	1	47	48	0	0	47 48	0	1	47 48
1	0	13	14										
				1	1	17	18						
1	2	21	22										

Caching Organization Summarized

- A cache consists of lines
- A line contains
 - A block of bytes, the data values from memory
 - A tag, indicating where in memory the values are from
 - A valid bit, indicating if the data are valid
- Lines are organized into sets
 - Direct-mapped cache: one line per set
 - k-way associative cache: k lines per set
 - Fully associative cache: all lines in one set

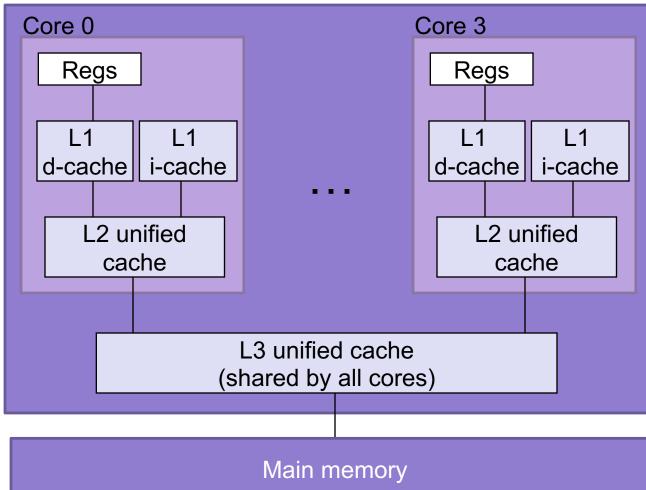
Caching Vocabulary

- Size: the total number of bytes that can be stored in the cache
- Cache Hit: the desired value is in the cache and returned quickly
- Cache Miss: the desired value is not in the cache and must be fetched from a more distant cache (or ultimately from main memory)
- Miss rate: the fraction of accesses that are misses
- Hit time: the time to process a hit
- Miss penalty: the *additional* time to process a miss
- Average access time: hit-time + miss-rate * miss-penalty

Categorizing Misses

- **Compulsory:** first-reference to a block
- Capacity: cache is too small to hold all of the data
- Conflict: collisions in a specific set

Average access time: hit-time + miss-rate * miss-penalty


Exercise 3: Categorizing Misses

• For each of the cache misses in Exercise 1, categorize that miss as (1) compulsory, (2) capacity, or (3) conflict

Based on your categorizations, would you recommend (1) increasing the block size, (2) increasing the associativity, or (3) increasing the total cache size

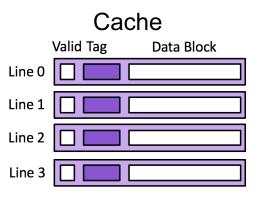
Typical Intel Core i7 Hierarchy

Processor package

L1 d-cache and i-cache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 10 cycles

L3 unified cache: 8 MB, 16-way, Access: 40-75 cycles

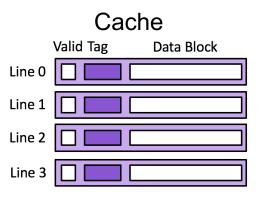

Block size: 64 bytes for all caches.

Caching and Writes

- What to do on a write-hit?
 - Write-through: write immediately to memory
 - Write-back: defer write to memory until replacement of line
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate: load into cache, update line in cache
 - Good if more writes to the location follow
 - No-write-allocate: writes straight to memory, does not load into cache
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Exercise 4: Write-through + No-write-allocate

Memory								
0x24	22							
0x20	21							
0x1c	20							
0x18	19							
0x14	18							
0x10	17							



Access	tag	idx	off	h/m
rd 0x10				
wr 8,0x10				
wr 9,0x24				
rd 0x24				
rd 0x20				

l	_in	e 0	Line 1			Line 2			Line 3			
0	0	47	0	1	47	0	2	47	0	3	47	

Exercise 4: Write-through + No-write-allocate

0x24 Q	
0x24 9	
0x20 21	
0x1c 20	
0x18 19	
0x14 18	
0x10 8	



Access	tag	idx	off	h/m
rd 0x10	0001	00	00	m
wr 8,0x10	0001	00	00	h
wr 9,0x24	0010	01	00	m
rd 0x24	0010	01	00	m
rd 0x20	0010	00	00	m

L	_in	e 0	Line 1			Line 2			Line 3			
0	0	47	0	1	47	0	2	47	0	3	47	
1	1	17										Ν
1	1	8										Y
												Y
			1	2	9							Ν
1	2	21										Ν

Exercise 5: Write-back + Write-allocate

Memory							
0x24	22						
0x20	21						
0x1c	20						
0x18	19						
0x14	18						
0x10	17						

Access	tag	idx	off	h/m
rd 0x10				
wr 8,0x10				
wr 9,0x24				
rd 0x24				
rd 0x20				

L	_in	e 0	L	Line 1			Line 2			Line 3			
0	0	47	0	1	47	0	2	47	0	3	47		

Exercise 5: Write-back + Write-allocate

Memory							
0x24	22						
0x20	21						
0x1c	20						
0x18	19						
0x14	18						
0x10	8						

Cache						
	Valid Tag	Data Block				
Line 0						
Line 1						
Line 2						
Line 3						

Access	tag	idx	off	h/m
rd 0x10	0001	00	00	m
wr 8,0x10	0001	00	00	h
wr 9,0x24	0010	01	00	m
rd 0x24	0010	01	00	h
rd 0x20	0010	00	00	m

Line 0		Line 1		Line 2		Line 3			W			
0	0	47	0	1	47	0	2	47	0	3	47	
1	1	17										Ν
1	1	8										Ν
			1	2	9							Ν
												Ν
1	2	21										Y

Exercise 6: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - 4. Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any questions that you would like me to address in this week's problem session?
- 4. Do you have any other comments or feedback?