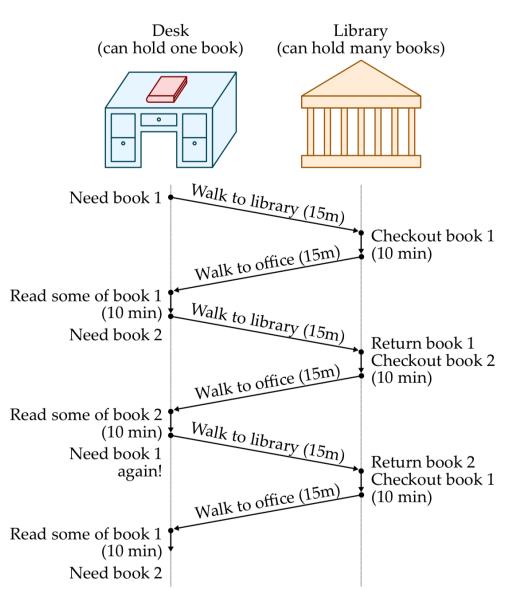
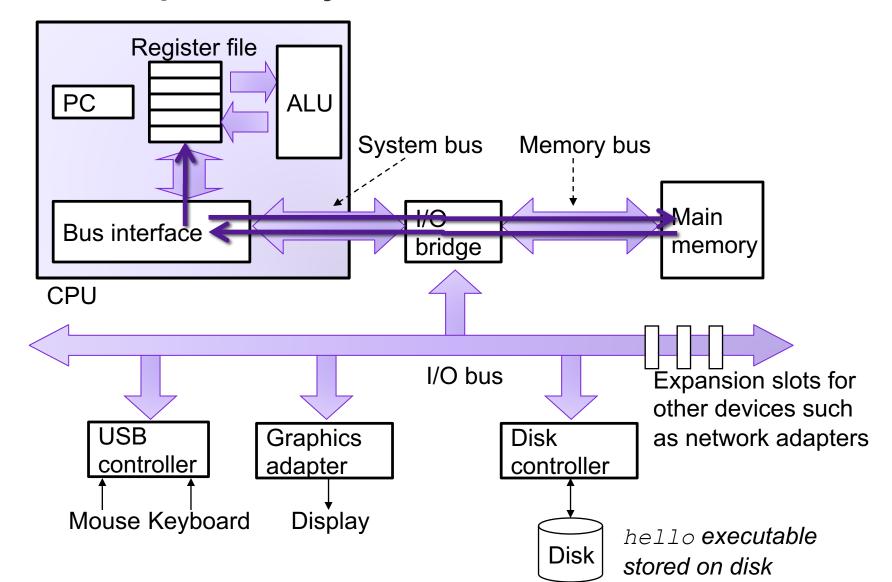

Lecture 12: Caches

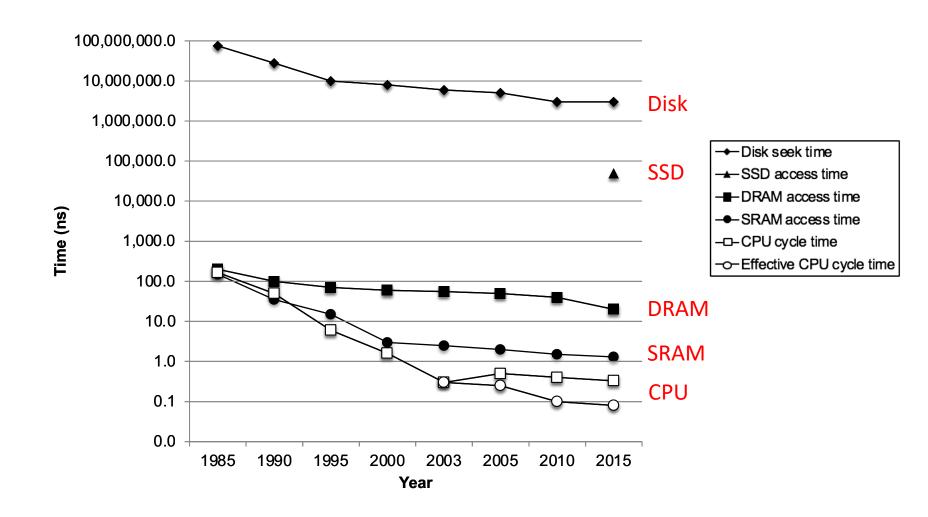
CS 105 Fall 2020


Life without caches

- You decide that you want to learn more about computer systems than is covered in this course
- The library contains all the books you could possibly want, but you don't like to study in libraries, you prefer to study at home.
- You have the following constraints:

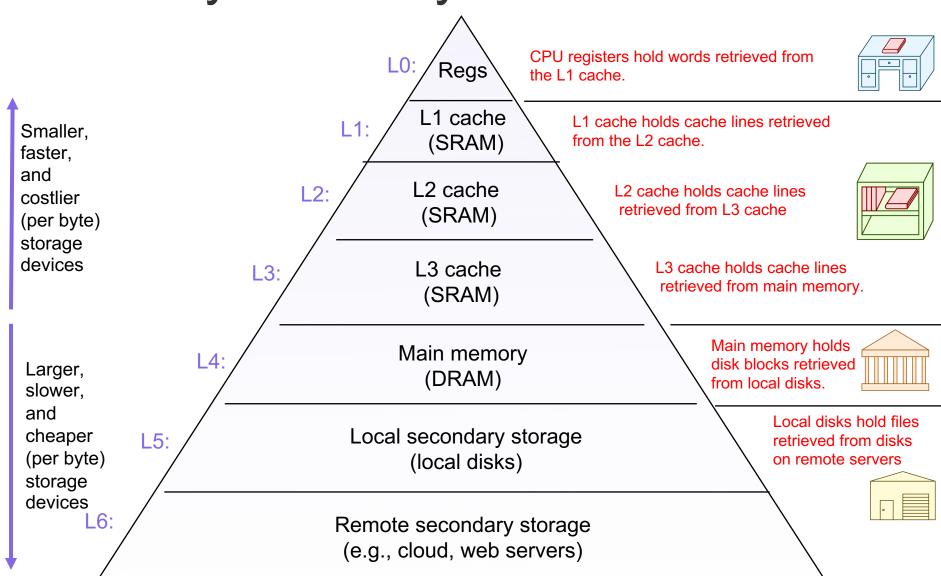


Life without caches



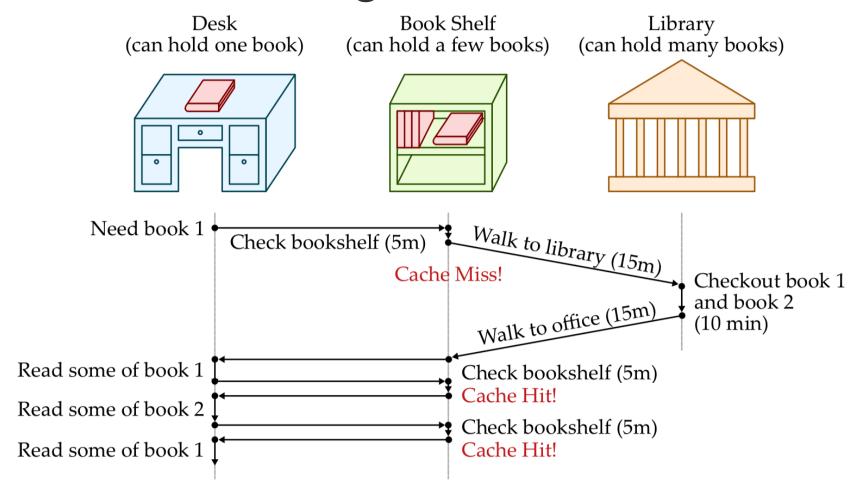
- Average latency to access a book: 40mins
- Average throughput (incl. reading time): 1.2 books/hr

A Computer System


The CPU-Memory Gap

Caching—The Very Idea

- Keep some memory values nearby in fast memory
- Modern systems have 3 or even 4 levels of caches
- Cache idea is widely used:
 - Disk controllers
 - Web
 - (Virtual memory: main memory is a "cache" for the disk)

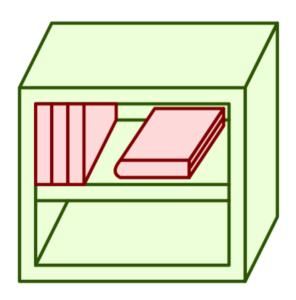

Memory Hierarchy

Latency numbers every programmer should know (2020)

L1 cache reference	1 ns	
Branch mispredict	3 ns	
L2 cache reference	4 ns	
Main memory reference	100 ns	
memory 1MB sequential read	3,000 ns	3 μs
SSD random read	16,000 ns	16 μ s
SSD 1MB sequential read	49,000 ns	49 μs
Magnetic Disk seek	2,000,000 ns	2 ms
Magnetic Disk 1MB sequential read	825,000 ns	825 μs
Round trip in Datacenter	500,000 ns	500 μs
Round trip CA<->Europe	150,000,000 ns	150 ms

Life with caching

- Average latency to access a book: <20mins
- Average throughput (incl. reading time): ~2 books/hr


Caching—The Vocabulary

 Size: the total number of bytes that can be stored in the cache

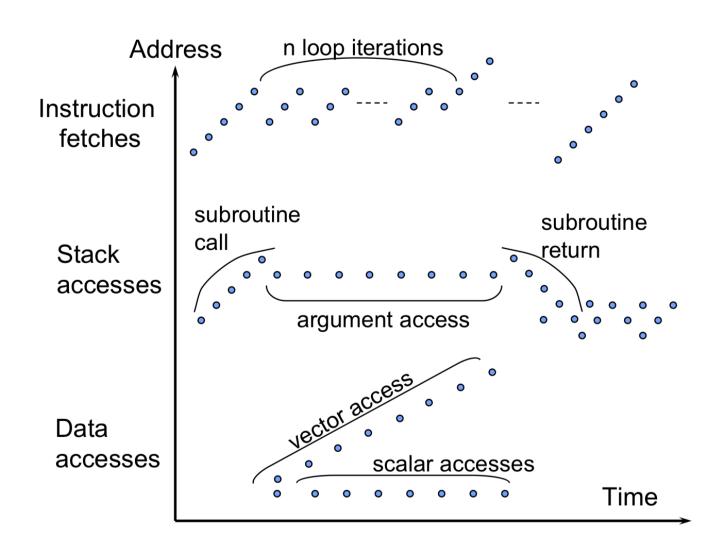
- Cache Hit: the desired value is in the cache and returned quickly
- Cache Miss: the desired value is not in the cache and must be fetched from a more distant cache (or ultimately from main memory)

Exercise 1: Caching Strategies

How should we decide which books to keep in the bookshelf?

Example Access Patterns

```
int sum = 0;
for (int i = 0; i < n; i++) {
    sum += a[i];
}
return sum;</pre>
```

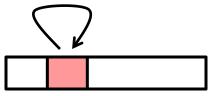

Data references

- Reference array elements in succession.
- Reference variable sum each iteration.

Instruction references

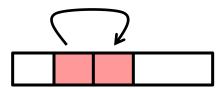
- Reference instructions in sequence.
- Cycle through loop repeatedly.

Example Access Patterns

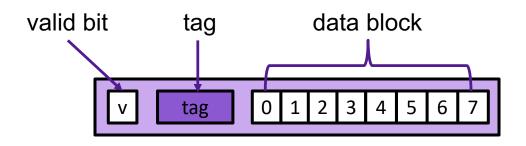


Principle of Locality

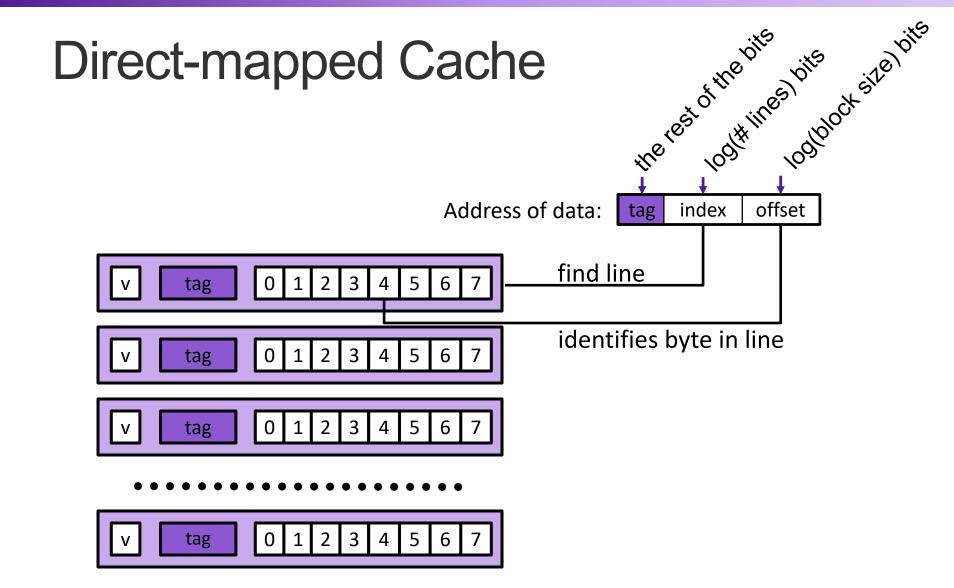
Programs tend to use data and instructions with addresses near or equal to those they have used recently


Temporal locality:

 Recently referenced items are likely to be referenced again in the near future


Spatial locality:

Items with nearby addresses tend
 to be referenced close together in time



CACHE ORGANIZATION

Cache Lines

- data block: cached data (i.e., copy of bytes from memory)
- tag: uniquely identifies which data is stored in the cache line
- valid bit: indicates whether or not the line contains meaningful information

Example: Direct-mapped Cache

Assume: cache block size 8 bytes

Assume: assume 8-bit machine

Exercise 2: Interpreting Addresses

Consider the hex address 0xA59. What would be the tag, index, and offset for this address with each of the following cache configurations?

- A direct-mapped cache with 8 cache lines and 8-byte data blocks
- 2. A direct-mapped cache with 16 cache lines and 4-byte data blocks
- A direct-mapped cache with 16 cache lines and 8-byte data blocks

Exercise 2: Interpreting Addresses

Consider the hex address 0xA59. What would be the tag, index, and offset for this address with each of the following cache configurations?

[1010 0101 1001]

1. A direct-mapped cache with 8 cache lines and 8-byte data blocks

101001 011 001

2. A direct-mapped cache with 16 cache lines and 4-byte data blocks

101001 0110 01

3. A direct-mapped cache with 16 cache lines and 8-byte data blocks

10100 1011 001

Exercise 3: Direct-mapped Cache

Memory				
0x14	18			
0x10	17			
0x0c	16			
80x0	15			
0x04	14			
0×00	13			

Ac	cess	tag	idx	off	h/m
rd	0x00	0000	00	00	m
rd	0x04				
rd	0x14				
rd	0x00				
rd	0x04				
rd	0x14				

	Cache					
	Valid Tag	Data Block				
Line 0						
Line 1						
Line 2						
Line 3						

Assume 4 byte data blocks

	Line	0		Line	1		Line	2		Line	3
0	0000	47	0	0000	47	0	0000	47	0	0000	47
1	0000	13									

Exercise 3: Direct-mapped Cache

Memory				
0x14	18			
0x10	17			
0x0c	16			
0x08	15			
0×04	14			
0x00	13			

	Cache					
	Valid Tag	Data Block				
Line 0						
Line 1						
Line 2						
Line 3						

Assume 4 byte data blocks

Ac	cess	tag	idx	off	h/m
rd	0x00	0000	00	00	m
rd	0x04	0000	01	00	m
rd	0x14	0001	01	00	m
rd	0x00	0000	00	00	h
rd	0x04	0000	01	00	m
rd	0x14	0001	01	00	m

	Line	0		Line	1		Line	2		Line	3
0	0000	47	0	0000	47	0	0000	47	0	0000	47
1	0000	13									
			1	0000	14						
			1	0001	18						
			1	0000	14						
			1	0001	18						

How well does this take advantage of spacial locality? How well does this take advantage of temporal locality?

Exercise 4: Direct-mapped Cache

Memory

0x14	18
0x10	17
0x0c	16
0x08	15
0x04	14
0x00	13

Ac	cess	tag	idx	off	h/m
rd	0x00				
rd	0x04				
rd	0x14				
rd	0x00				
rd	0x04				
rd	0x14				

Cache

,	Valid Tag	Data Block
Line 0		
Line 1		

Assume 8 byte data blocks

Line 0			Line 1				
0	0000	47	48	0	0000	47	48

Exercise 4: Direct-mapped Cache

Memory			
0x14	18		
0x10	17		
0x0c	16		
0x08	15		
0×04	14		
0x00	13		

Access		tag	idx	off	h/m
rd	0x00	0000	0	000	m
rd	0x04	0000	0	100	h
rd	0x14	0001	0	100	m
rd	0x00	0000	0	000	m
rd	0x04	0000	0	100	h
rd	0x14	0001	0	100	m

Cache					
	Valid Tag	Data Block			
Line 0					
Line 1					

Assume 8 byte data blocks

	Line 0			Line 1			
0	0000	47	48	0	0000	47	48
1	0000	13	14				
1	0001	17	18				
1	0000	13	14				
1	0001	17	18				

How well does this take advantage of spacial locality? How well does this take advantage of temporal locality?

Exercise 5: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - 4. Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any questions that you would like me to address in this week's problem session?
- 4. Do you have any other comments or feedback?