
CS 105 Fall 2020

Lecture 4: Floats

Representing Integers
• unsigned:

• signed (two's complement):

Note: to compute –x for a signed int x, flip all the bits, then add 1

CS 105, Computer Systems Pomona College

Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.

16

128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

-128 (27) 64 (26) 32 (25) 16 (24) 8 (23) 4 (22) 2 (21) 1 (20)

Fractional binary numbers
• What is 1001.1012?

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2
• Represents rational number: ∑!"#$% (𝑏! ⋅ 2!)

• • •

Example: Fractional Binary Numbers
• What is 1001.1012?

• What is the binary representation of 13 9/16?

= 𝟖 + 𝟏 +
𝟏
𝟐 +

𝟏
𝟖 = 𝟗

𝟓
𝟖 = 𝟗. 𝟔𝟐𝟓

1101.1001

Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary

representation
• 5 3/4
• 2 7/8
• 1 7/16

• Translate the following fractional binary numbers to their
decimal representation
• .011

• .11

• 1.1

Exercise 1: Fractional Binary Numbers
• Translate the following fractional numbers to their binary

representation
• 5 3/4
• 2 7/8
• 1 7/16

• Translate the following fractional binary numbers to their
decimal representation
• .011

• .11

• 1.1

101.11

10.111

1.0111

=
𝟏
𝟒 +

𝟏
𝟖 =

𝟑
𝟖 = . 𝟑𝟕𝟓

=
𝟏
𝟐 +

𝟏
𝟒 =

𝟑
𝟒 = . 𝟕𝟓

= 𝟏 +
𝟏
𝟐 =

𝟑
𝟐 = 𝟏. 𝟓

Representable Numbers
• Limitation #1

• Can only exactly represent numbers of the form x/2k

• Other rational numbers have repeating bit representations
• Value Representation

• 1/3 0.0101010101[01]…2
• 1/5 0.001100110011[0011]…2
• 1/10 0.0001100110011[0011]…2

• Limitation #2
• Just one setting of binary point within the w bits
• Limited range of numbers (very small values? very large?)

• Numerical Form: −1 4 ⋅ 𝑀 ⋅ 28
• Sign bit 𝑠 determines whether number is negative or positive
• Significand 𝑀 normally a fractional value in range [1.0,2.0)
• Exponent 𝐸 weights value by power of two

• Encoding:

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

Floating Point Representation

𝑠 exp = 𝑒!#?…𝑒?𝑒@ frac = 𝑓A#?…𝑓?𝑓@

bias

Float (32 bits):
• k = 8, n = 23
• bias = 127
Double (64 bits)
• k=11, n = 52
• bias = 1023

Example: Floats
• What fractional number is represented by the bytes

0x3ec00000? Assume big-endian order.
𝑠 exp = 𝑒!#?…𝑒?𝑒@ frac = 𝑓A#?…𝑓?𝑓@

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

0011 1110 1100 0000 0000 0000 0000 0000
s=0 exp=125 frac = 100000000000000000000002

s=0 E = -2 M = 1.100000000000000000000002 = 1.510

−1 $ ⋅ 1.5#$ ⋅ 2"& = 1 ⋅
3
2 ⋅
1
4 =

3
8 = . 𝟑𝟕𝟓𝟏𝟎

−1 $ ⋅ 1.1& ⋅ 2"& = .011&=
1
4 +

1
8 = . 𝟑𝟕𝟓𝟏𝟎

−1 4 ⋅ 𝑀 ⋅ 28

Exercise 2: Floats
• What fractional number is represented by the bytes

0x423c0000? Assume big-endian order.
𝑠 exp = 𝑒!#?…𝑒?𝑒@ frac = 𝑓A#?…𝑓?𝑓@

Float (32 bits):
• k = 8, n = 23
• bias = 127

• s is sign bit s
• exp field encodes 𝐸 (but is not equal to E)

• normally 𝐸 = 𝑒!"#…𝑒#𝑒$ − (2!"# − 1)
• frac field encodes M (but is not equal to M)

• normally 𝑀 = 1. 𝑓%"#…𝑓#𝑓$

0100 0010 0011 1100 0000 0000 0000 0000
s=0 exp=132 frac = 011110000000000000000002

s=0 E = 5 M = 1.011110000000000000000002

−1 $ ⋅ 1.011110& ⋅ 2) = 101111.0& == 𝟒𝟕𝟏𝟎

−1 4 ⋅ 𝑀 ⋅ 28

Limitation so far…
• What is the smallest non-negative number that can be

represented?

0000 0000 0000 0000 0000 0000 0000 0000
s=0 exp=0 frac = 000000000000000000000002

s=0 E = -127 M = 1.000000000000000000000002

−1 $ ⋅ 1.0& ⋅ 2"#&* = 2"#&*

s exp frac
1 8-bits 23-bits

Normalized and Denormalized

−1 4 ⋅ 𝑀 ⋅ 28

Normalized Values
• exp is neither all zeros nor all ones (normal case)
• exponent is defined as E = 𝑒!#?…𝑒?𝑒@ − bias, where
bias = 2! − 1 (e.g., 127 for float or 1023 for double)

• significand is defined as 𝑀 = 1. 𝑓A#?𝑓A#G…𝑓@

• Denormalized Values
• exp is either all zeros or all ones
• if all zeros: E = 1 − bias and 𝑀 = 0. 𝑓A#?𝑓A#G…𝑓@
• if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

s exp frac

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0NaN NaN

Exercise 3: Limitations of Floats
• What is the difference between the largest (non-infinite)

positive number that can be represented as a
(normalized) float and the second-largest?

s exp frac
1 8-bits 23-bits

Exercise 3: Limits of Floats
• What is the difference between the largest (non-infinite)

positive number that can be represented as a
(normalized) float and the second-largest?

s exp frac
1 8-bits 23-bits

0111 1111 0111 1111 1111 1111 1111 1111
s=0 E = 127 M = 1.111111111111111111111112

largest = 1.11111111111111111111111G ⋅ 2?GO
second_largest = 1.11111111111111111111110G ⋅ 2?GO

diff = 0.00000000000000000000001G ⋅ 2?GO = 𝟐𝟗𝟓

Floating Point in C
• C Guarantees Two Levels

• float single precision (32 bits)
• double double precision (64 bits)

• Conversions/Casting
• Casting between int, float, and double changes bit
representation
• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN: Generally sets to TMin

• int → double
• Exact conversion,

• int → float
• Will round

Exercise 4: Casting with Floats
• Assume you have three variables: an int x, a float f, and a

double d. Assume that all three variables store numeric
values (not +∞,−∞, or NaN). Which of the following
expressions are guaranteed to evaluate to True?
1. x == (int)(double)(x)
2. x == (int)(float)(x)
3. d == (double)(float) d
4. f == (float)(double) f

Exercise 4: Casting with Floats
• Assume you have three variables: an int x, a float f, and a

double d. Assume that all three variables store numeric
values (not +∞,−∞, or NaN). Which of the following
expressions are guaranteed to evaluate to True?
1. x == (int)(double)(x)
2. x == (int)(float)(x)
3. d == (double)(float) d
4. f == (float)(double) f

True
False
False
True

Floating Point Addition
• Float operations done by separate hardware unit (FPU)
• 𝐹" + 𝐹$ = −1 (+ ⋅ 𝑀" ⋅ 2,+ + −1 (+ ⋅ 𝑀" ⋅ 2,+

• Assume E1 > E2

• Exact Result: −1 (⋅ 𝑀 ⋅ 2,
• Sign s, significand M:

• Result of signed align & add
• Exponent E: E1

• Fixing
• If M ≥ 2, shift M right, increment E
• if M < 1, shift M left k positions, decrement E by k
• Overflow if E out of range
• Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

Get binary points lined up

FP Multiplication
• 𝐹? ⋅ 𝐹G = −1 4- ⋅ 𝑀? ⋅ 28- ⋅ −1 4- ⋅ 𝑀? ⋅ 28-
• Exact Result: −1 4 ⋅ 𝑀 ⋅ 28

• Sign s: s1 ^ s2
• Significand M: M1 x M2
• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E
• If E out of range, overflow
• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands

• Example 1: Is (x + y) + z = x + (y + z)?
• Ints: Yes!
• Floats:

• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

• Example 2: Is (x * y) * z = x * (y * z)?
• Ints: Yes!
• Floats:

• (2^30 + -2^30) + 3.14 ➙ 3.14
• 2^30 + (-2^30 + 3.14) ➙ ??

Correctness

Exercise 5: Feedback
1. Rate how well you think this recorded lecture worked

1. Better than an in-person class
2. About as well as an in-person class
3. Less well than an in-person class, but you still learned something
4. Total waste of time, you didn't learn anything

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any comments or feedback?

