Lecture 4: Floats

CS 105

Representing Integers

- unsigned:
$128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)$

- signed (two's complement):
$-128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)$

Note: to compute $-x$ for a signed int x , flip all the bits, then add 1

$$
x+\sim x=11 \ldots 1=-1, \text { so } x+(\sim x+1)=0
$$

Fractional binary numbers

-What is 1001.101_{2} ?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i}\left(b_{k} \cdot 2^{k}\right)$

Example: Fractional Binary Numbers

- What is 1001.101_{2} ?

$$
=8+1+\frac{1}{2}+\frac{1}{8}=9 \frac{5}{8}=9.625
$$

- What is the binary representation of $139 / 16 ?$

$$
1101.1001
$$

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
- $53 / 4$
- $27 / 8$
- $17 / 16$
- Translate the following fractional binary numbers to their decimal representation
. . 011
. . 11
- 1.1

Exercise 1: Fractional Binary Numbers

- Translate the following fractional numbers to their binary representation
- 5 3/4 101.11
. $27 / 810.111$
- $17 / 161.0111$
- Translate the following fractional binary numbers to their decimal representation
. $.011=\frac{1}{4}+\frac{1}{8}=\frac{3}{8}=.375$
. $.11=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}=.75$
- $1.1=1+\frac{1}{2}=\frac{3}{2}=1.5$

Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101[01]...2
- $1 / 50.001100110011[0011] \ldots$
- $1 / 100.0001100110011[0011]$...2
- Limitation \#2
- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range $[1.0,2.0$)
- Exponent E weights value by power of two
- Encoding:

$$
\begin{array}{|l|l|l|}
\hline s & \exp =e_{k-1} \ldots e_{1} e_{0} & \text { frac }=f_{n-1} \ldots f_{1} f_{0} \\
\hline
\end{array}
$$

- s is sign bit s
- \exp field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$-bias
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

Double (64 bits)

- $\mathrm{k}=11, \mathrm{n}=52$
- bias = 1023

Example: Floats

- What fractional number is represented by the bytes $0 \times 3 \mathrm{c} 00000$? Assume big-endian order.

s	$\exp =e_{k-1} \ldots e_{1} e_{0}$	frac $=f_{n-1} \ldots f_{1} f_{0}$

- s is sign bit s
- $\quad \exp$ field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

00111110110000000000000000000000

$\begin{array}{lll}s=0 & \text { exp }=125 & \text { frac }=10000000000000000000000_{2} \\ s=0 & E=-2 & M=1.10000000000000000000000_{2}=1.5_{10}\end{array}$
$(-1)^{0} \cdot 1.5_{10} \cdot 2^{-2}=1 \cdot \frac{3}{2} \cdot \frac{1}{4}=\frac{3}{8}=.375_{10}$

$$
(-1)^{0} \cdot 1.1_{2} \cdot 2^{-2}=.011_{2}=\frac{1}{4}+\frac{1}{8}=.375_{10}
$$

Exercise 2: Floats

- What fractional number is represented by the bytes 0x423c0000? Assume big-endian order.

$$
\begin{array}{|l|l|l}
s & \exp =e_{k-1} \ldots e_{1} e_{0} & \text { frac }=f_{n-1} \ldots f_{1} f_{0} \\
\hline
\end{array}
$$

- s is sign bit s
- $\quad \exp$ field encodes E (but is not equal to E)
- normally $E=e_{k-1} \ldots e_{1} e_{0}-\left(2^{k-1}-1\right)$
- frac field encodes M (but is not equal to M)
- normally $M=1 . f_{n-1} \ldots f_{1} f_{0}$

Float (32 bits):

- $k=8, n=23$
- bias $=127$

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

0100 0010001111000000000000000000

$$
\begin{array}{lll}
s=0 & \text { exp }=132 & \text { frac }=01111000000000000000000_{2} \\
s=0 & E=5 & M=1.01111000000000000000000_{2}
\end{array}
$$

$$
(-1)^{0} \cdot 1.011110_{2} \cdot 2^{5}=101111.0_{2}==47_{10}
$$

\section*{| s | exp | frac | |
| :--- | :--- | :--- | :--- |
| 1 | 8-bits | 23-bits | | Limitation so far...}

-What is the smallest non-negative number that can be represented?

00000000000000000000000000000000
$\begin{array}{lll}s=0 & \text { exp }=0 & f r a c=00000000000000000000000_{2} \\ s=0 & E=-127 & M=1.00000000000000000000000_{2}\end{array}$

$$
(-1)^{0} \cdot 1.0_{2} \cdot 2^{-127}=2^{-127}
$$

Normalized and Denormalized

s	\exp	frac

$$
(-1)^{S} \cdot M \cdot 2^{E}
$$

Normalized Values

- exp is neither all zeros nor all ones (normal case)
- exponent is defined as $\mathrm{E}=e_{k-1} \ldots e_{1} e_{0}$ - bias, where bias $=2^{k}-1$ (e.g., 127 for float or 1023 for double)
- significand is defined as $M=1 . f_{n-1} f_{n-2} \ldots f_{0}$
- Denormalized Values
- exp is either all zeros or all ones
- if all zeros: $\mathrm{E}=1$ - bias and $M=0 . f_{n-1} f_{n-2} \ldots f_{0}$
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings

- What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?

\section*{| s \exp |
| :--- |
| ${ }^{1}$ frac |
| 8-bits |
| Limits of Floats |}

- What is the difference between the largest (non-infinite) positive number that can be represented as a (normalized) float and the second-largest?
01111111011111111111111111111111
$\mathrm{s}=0 \quad \mathrm{E}=127 \quad \mathrm{M}=1.111111111111111111111_{2}$

$$
\text { largest }=1.111111111111111111111111_{2} \cdot 2^{127}
$$

second_largest $=1.11111111111111111111110_{2} \cdot 2^{127}$

$$
\text { diff }=0.00000000000000000000001_{2} \cdot 2^{127}=2^{95}
$$

Floating Point in C

- C Guarantees Two Levels
- float single precision (32 bits)
- double double precision (64 bits)
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion,
- int \rightarrow float
- Will round

Exercise 4: Casting with Floats

- Assume you have three variables: an int x , a float f , and a double d. Assume that all three variables store numeric values (not $+\infty,-\infty$, or NaN). Which of the following expressions are guaranteed to evaluate to True?

$$
\begin{aligned}
& \text { 1. } \mathrm{x}==(\text { int })(\text { double })(\mathrm{x}) \\
& \text { 2. } \mathrm{x}==(\text { int })(\text { float })(\mathrm{x}) \\
& \text { 3. } \mathrm{d}==(\text { double) (float) } \mathrm{d} \\
& \text { 4. } \mathrm{f}==(\text { float) (double) } \mathrm{f}
\end{aligned}
$$

Exercise 4: Casting with Floats

- Assume you have three variables: an int x , a float f , and a double d. Assume that all three variables store numeric values (not $+\infty,-\infty$, or NaN). Which of the following expressions are guaranteed to evaluate to True?

\author{

1. $x==$ (int)(double)(x) True
 2. $x==$ (int)(float)(x) False
 3. d == (double)(float) d False
 4. f == (float)(double) f True
}

Floating Point Addition

- Float operations done by separate hardware unit (FPU)
- $F_{1}+F_{2}=(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}}+(-1)^{s_{1}} \cdot M_{1} \cdot 2^{E_{1}}$
- Assume E1 > E2

Get binary points lined up

- Exact Result: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign s, significand M:
- Result of signed align \& add
- Exponent E: E1
- Fixing

$(-1)^{\mathrm{s}} \mathrm{M}$
- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

FP Multiplication

- $F_{1} \cdot F_{2}=(-1)^{S_{1}} \cdot M_{1} \cdot 2^{E_{1}} \cdot(-1)^{S_{1}} \cdot M_{1} \cdot 2^{E_{1}}$
- Exact Result: $(-1)^{S} \cdot M \cdot 2^{E}$
- Sign s:
s1 ^ s 2
- Significand M: M1 x M2
- Exponent E: E1 + E2
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Correctness

- Example 1: Is $(x+y)+z=x+(y+z)$?
- Ints: Yes!
- Floats:

$$
\begin{aligned}
& \cdot\left(2^{\wedge} 30+-2^{\wedge} 30\right)+3.14 \rightarrow 3.14 \\
& \cdot 2^{\wedge} 30+\left(-2^{\wedge} 30+3.14\right) \rightarrow ? ?
\end{aligned}
$$

- Example 2: Is ($x^{*} y$) $z=x$ * $\left(y^{*} z\right)$?
- Ints: Yes!
- Floats:

$$
\begin{aligned}
& \cdot\left(2^{\wedge} 30+-2^{\wedge} 30\right)+3.14 \rightarrow 3.14 \\
& \cdot 2^{\wedge} 30+\left(-2^{\wedge} 30+3.14\right) \rightarrow ? ?
\end{aligned}
$$

Exercise 5: Feedback

1. Rate how well you think this recorded lecture worked
2. Better than an in-person class
3. About as well as an in-person class
4. Less well than an in-person class, but you still learned something
5. Total waste of time, you didn't learn anything
6. How much time did you spend on this video lecture (including time spent on exercises)?
7. Do you have any comments or feedback?
