Lecture 4: Floats

CS 105 Fall 2020

Representing Integers

- unsigned:
128 (27) 64(2°) 32(25 16(24) 8(2%) 4(2) 2(21) 1(29

- signed (two's complement):
128 (27) 64(26) 32(25) 16(24) 8(2%) 4(22) 2(2) 1(29
|

% QU s ¢ -

Note to compute —x for a signed int x, flip all the bits, then add 1
X+ [xF11...1=-1,sox+ ([xKH1)=0

Fractional binary numbers

- What is 1001.101,?

Fractional Binary Numbers

2I
2i—1
‘ — 1
bi |bi1| ees | b2 | b bolb-l b2 |bs|eee | by
12 — |
1/4 ‘ ® 00
1/8
- Representation 21

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number: ch=_j(bk . 28

Example: Fractional Binary Numbers
. Whatis 1001.101,7?

—8+1+1+1—95—9625
B 2 8 8 7

. What is the binary representation of 13 9/167?

1101.1001

Exercise 1: Fractional Binary Numbers

Translate the following fractional numbers to their binary
representation

5 3/4
27/8
17/16

Translate the following fractional binary numbers to their
decimal representation

.011
11
1.1

Exercise 1: Fractional Binary Numbers

Translate the following fractional numbers to their binary

representation
5 3/4 101.11
27/8 10.111
17/16 1.0111

Translate the following fractional binary numbers to their

decimal representa’éion

011 _Z+§_§_'375
S N
11 _2 4__4__'
1 3
11 —1+E—§—1.5

Representable Numbers

« Limitation #1

- Can only exactly represent numbers of the form x/2X
- Other rational numbers have repeating bit representations

- Value Representation
- 1/3 0.0101010101[01]..2
- 1/5 0.001100110011[0011]..2

- 110 0.0001100110011[0011]..2

- Limitation #2

- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)

Floating Point Representation

- Numerical Form: (=1)° - M - 2F
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by power of two

- Encoding:
s | exp=-ep_q1..61€9 frac = f,,_1 ... f1f0
-« S is sign bit s Float (32 bits):

- exp field encodes E (but is not equal to E) « k=8,n=23
* bias =127

[] = — k_l - i
nor-mally E= e,_q1..61€ | |(2 1)}— bias Double (64 bits)
- frac field encodes M (but is not equal to M) e k=11,n=52
e normally M = 1.f,,_1 ... f1ifo * bias =1023

Example: Floats

- What fractional number is represented by the bytes
0x3ec000007? Assume big-endian order.

s | exp=ex_q..€1€ frac = f,,_1 ... f1fo
* Sissign bits Float (32 bits):
» exp field encodes E (but is not equal to E) « k=8,n=23
« normally E = e,_; ...e;eq — (21 = 1) « bias =127
» frac field encodes M (but is not equal to M)
(—1)S-M-2E

« normally M = 1.f,_1 .. fifo

0011 1110 1100 0000 0000 0000 0000 0000

s=0 exp=125 frac = 10000000000000000000000,
s=0 E=-2 M = 1.10000000000000000000000, = 1.5,
31 3 1
(-1)° 1559 272 =122 =2=.375;, (-1)° 11, 272 =011, =

1
—=.375
+8 10

Exercise 2: Floats

- What fractional number is represented by the bytes
0x423c0000? Assume big-endian order.

s | exp=ex_q..€1€ frac = f,,_1 ... f1fo
* Sissign bits Float (32 bits):
» exp field encodes E (but is not equal to E) « k=8,n=23
« normally E = e,_; ...e;eq — (21 = 1) « bias =127
» frac field encodes M (but is not equal to M) S E
e normally M =1.f,_1 ... f1ifo (_1) M -2
0100 0010 0011 1100 0000 0000 0000 0000|
s=0 exp=132 frac = 01111000000000000000000,
s=0 E=5 M =1.01111000000000000000000,

(=1)°-1.011110, - 25 = 101111.0, == 474,

_ S ‘exp ‘frac |

8-bits 23-bits
Limitation so far..

- What is the smallest non-negative number that can be
represented?

0000 0000 G000 0000 0000 0000 0000 0000

s=0 exp=0 frac = 00000000000000000000000-
s=0 E=-127 M = 1.00000000000000000000000,

(_1)0] 102] 2—127 — 2—127

Normalized and Denormalized

S |exp frac

(—1)S-M - 28
Normalized Values

- exp is neither all zeros nor all ones (normal case)

- exponent is defined as E = e;_; ...e;eqy — bias, where
bias = 2¥ — 1 (e.g., 127 for float or 1023 for double)

- significand is definedas M = 1. f,,_1 fn—2 - fo

« Denormalized Values

- exp is either all zeros or all ones
- ifall zeros: E=1—biasand M = 0. f,,_1fn—2 - fo
- if all ones: infinity (if frac is all zeros) or NaN (if frac is non-zero)

Visualization: Floating Point Encodings

-0 _ . +00
| —Normalized | -Denorm . .+Denorm +Normalized |

=
Ix: | |
\ NaN
+0

I I _O=/

_ S ‘exp ‘frac |

8-bits 23-bits
Exercise 3 Limitations of Floats

- What is the difference between the largest (non-infinite)
positive number that can be represented as a
(normalized) float and the second-largest?

_ S ‘exp ‘frac |

8-bits 23-bits
Exercise 3 Limits of Floats

- What is the difference between the largest (non-infinite)
positive number that can be represented as a
(normalized) float and the second-largest?

0|111 1111 4111 1111 1111 1111 1111 1111

s=0 E=127 M=1.11111111111111111111111,,

largest = 1.11111111111111111111111,, - 2127
second_largest = 1.11111111111111111111110, - 2127

diff = 0.00000000000000000000001, - 2127 = 295

Floating Point in C

- C Guarantees Two Levels
- float single precision (32 bits)
- double double precision (64 bits)

- Conversions/Casting

- Casting between int, £loat, and double changes bit
representation
- double/float — int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
-int — double
- Exact conversion,
- int — float
« Will round

Exercise 4. Casting with Floats

- Assume you have three variables: an int x, a float f, and a
double d. Assume that all three variables store numeric
values (not +o00,—c0, or NaN). Which of the following
expressions are guaranteed to evaluate to True?

1. X == (int) (double) (x)
2. x == (int) (float) (x)
3. d == (double) (float) d
4. £ == (float) (double) £

Exercise 4. Casting with Floats

- Assume you have three variables: an int x, a float f, and a
double d. Assume that all three variables store numeric
values (not +o00,—c0, or NaN). Which of the following
expressions are guaranteed to evaluate to True?

1. x == (int) (double)(x) True
2. X == (int) (float) (x) False
3. d == (double) (float) d False
4. £ == (float) (double) £ True

Floating Point Addition

- Float operations done by separate hardware unit (FPU)

.Fl

- Exact Result: (=1)° - M - 2%

+ FZ — (_1)51 * M1 ° ZEl + (_1)51 * Ml ° ZEl

Assume E1 > E2 Get binary points lined up

—E1-E2

|(—1)s2 M2

- Sign s, significand M: ‘(_1)51 Wi
- Result of signed align & add ¥
- Exponent E: E1
. Fixing LM
- If M = 2, shift M right, increment E

- if M < 1, shift M left k positions, decrement E by k

- Overflow if E out of range
- Round M to fit £rac precision

FP Multiplication

e F{-Fy,=(=1)5 - M, - 2E1 . (=15 . My - 2E4
- Exact Result: (—=1)5 - M - 2F

- Sign s: s1”s2
- Significand M: M1 Xx M2
- Exponent E: E1l+ E2

- Fixing

- If M = 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit £rac precision

- Implementation
- Biggest chore is multiplying significands

Correctness

- Example1:Is (x+y)+z = x+ (y +2)?
- Ints: Yes!

- Floats:
. (2730 + -2730) + 3.14 — 3.14
« 2730 + (-2"30 + 3.14) — ?7?

-Example 2:Is (x*y)*z = x*(y * 2)?
- Ints: Yes!

- Floats:
. (2730 + -2730) + 3.14 — 3.14
« 2730 + (-2"30 + 3.14) — ?7?

Exercise 5: Feedback

1. Rate how well you think this recorded lecture worked

Better than an in-person class

About as well as an in-person class

Less well than an in-person class, but you still learned something
Total waste of time, you didn't learn anything

W

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any comments or feedback?

