Lecture 3: Representing Signed Integers

CS 105 Fall 2020

Memory: A (very large) array of bytes

. bytes
- Memory is an array of-bie~

- A byte is a unit of eight bits

- An index into the array is an address,
location, or pointer

- Often expressed in hexadecimal

- We speak of the value in memory at
an address

- The value may be a single byte ...

- ... or a multi-byte quantity starting
at that address

00110111

11010001

01010011

01101100

Base-2 Integers (aka Binary Numbers)

128 (27) 64 (2) 32(25) 16(24) 8(23) 4(22) 2(2Y

%ﬁiﬁ R

1 (29

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
+/- 64(25) 32(25) 16(24) 8(23) 4(22) 2(2) 1(29

gUve s s -

Representing Signed Integers

- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue(w) — K

128 (27) 64 (2°) 32(25 16(24) 8(23) 4(22) 2(2) 1(2° -128

Representing Signed Integers

- Option 3: two’s complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative
- Signed(x) = —xy_1 - 2V 1+ YW 2 x; - 2
128 (-26) 64 (26) 32(25) 16(24 8(2%) 4(22 2(21) 1(29

Example: Three-bit integers

unsigned

111
110
101
100
011
010
001
000

OFR NWDOI O N

signed

011
010
001
000
111
110
101
100

= The high-order bit is the sign bit.

e The largest unsigned value is

11...1, UMax.

e The signed value for —1 is always
11...1.

e Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

Important Signed Numbers

8 | 6 | 32 | 64

OX7FFF
0x8000
0x0000
OXFFFF

OX7FFFFFFF
0x80000000
0Xx00000000
OXFFFFFFFF

OX7FFFFFFFFFFFFFFF
0x800000000VVVL
0X00000000000VVL
OXFFFFFFFFFFFFFFFF

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:
- What is the binary representation for 477
- What is the hex representation for 477
- What is the binary representation for -477?
- What is the hex representation for -47

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:
- What is the binary representation for 477 00101111
- What is the hex representation for 477 0x2F
- What is the binary representation for -47? 11010001
- What is the hex representation for -47 0xD1

Casting between Numeric Types

- Casting from shorter to longer types preserves the value

- Casting from longer to shorter types evaluates to
U2T, (x mod 2%)

- Casting between signed/unsigned types preserves the
bits (it just changes the interpretation)

- Implicit casting occurs in assignments and parameter
lists. In mixed expressions, signed values are implicitly

cast to unsigned
- Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table

__Expression | Decimal | Binary
e 6
e 101010
(unsigned int) x
(int) sy
TMax
TMin

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts

- Assume variables: int x = -17; short sy = -=-3;
- Complete the following table
mm
———— 111010
e -22 101010
(unsigned int) x 47 101111
(int) sy -3 111101
TMax 31 011111

TMin -32 100000

When to Use Unsigned

- Rarely

- When doing multi-precision arithmetic, or when you need
an extra bit of range ... but be careful!

unsigned i;
for (i = ecnt-2; i >= 0; i--){
af[i] += a[i+l];

}

Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on
integer binary types

Integer Integer
Operand Operand

v v

A \/ B
Status
Status
Opcode Y

Integer
Result

Bitwise vs Logical Operations in C

- Bitwise Operators &, |, ~, A
- View arguments as bit vectors
- operations applied bit-wise in parallel

- Logical Operators &&, |, !
- View 0 as “False”
- View anything nonzero as “True”
- Always return 0 or 1
- Early termination

- Shift operators <<, >>

- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- Assume signed one-byte integer values

. ~Qxe’2
- 10xe?2

- Ox78 & Ox55
- Ox78 | Ox55

- Ox78 && Ox55
- Ox78 || @x55

- Ox96 << 4
- Ox96 << 2
- Ox96 >> 4
- Ox96 >> 2

Exercise 3: Bitwise vs Logical Operations

- Assume signed char data type (one byte)

. ~Qxe’2
- 10xe?2

- Ox78 & Ox55
- Ox78 | Ox55

- Ox78 && Ox55
- Ox78 || @x55

- 0x96
- 0x96
- 0x96
- 0x96

<< 4
<< 2
>> 4
>> 2

~11100010 =
111100010 =

01111000 &

01111000 |

01111000 &&
01111000 | |

10010110 <<
10010110 <<
10010110 >>
10010110 >>

00011101 = Ox1d

00000000 = 0x00

01010101

01010101

01010101
01010101

N DN P

01100000
01011000
00001001
00100101

01010000
01111101

00000001
00000001

0x60
Ox58
0x09
Ox25

0x50
Ox7d

0x01
0x01

Addition Example

- Compute 5 + -3 assuming all ints are stored as four-bit
signed values

1 1
0101

+ 1101
O0O10 =2(Base-10)

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

- Compute 5 + 3 assuming all ints are stored as four-bit
signed values

111
0101

+ 0011
1000 =-8(Base-10)

Error Cases

- Assume w-bit signed values

—2 .w-1 —w-1 0 w-1 2. pw-1
® ® ® ® o—

[)

representable values

Possible values of x + y

x+y — 2% (positive overflow)
c x4l y=<x+y (normal)
x+y+2Y (negative overflow)

- overflow has occurred iff x >0andy > 0and x +f, y < 0
orx<O0andy<Oandx+{ y>0

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether or not an overflow occurred

x|y | xty loverflow?

00010 00101
01100 00100
10100 10001

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their
sum and indicate whether or not an overflow occurred

x|y | xiy | overflow?

00010 00101 00111
01100 00100 10000 yes
10100 10001 00101 yes

Multiplication Example

- Compute 3 x 2 assuming all ints are stored as four-bit

signed values
o011
XO001O0

O00O0
+0011
O11 0O =6 (Base-10)

Exactly like unsigned multiplication!
... except with different error cases

Multiplication Example

- Compute 5 x 2 assuming all ints are stored as four-bit
signed values

0101
XO0010

o000
+01 01
1010 =-6(Base-10)

Error Cases
- Assume w-bit unsigned values
_22(W—1) —ow-1 0 ow—1 ZZ(W_l)
@ @ o O o—

[
L
representable values

—
Nl

Possible values of x %y

e x *L, vy = U2T((x - y) mod 2V)

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether or not an overflow occurred

x|y | xy loverflow?
100

101
010 011
111 010

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their
product and indicate whether or not an overflow occurred

x|y | xty |overflow?
100 101 100 yes
010 011 110 yes

111 010 110 yes

Multiplying with Shifts

- Multiplication is slow

- Bit shifting is kind of like multiplication, and is often faster
- X*8=x<<3
e X*10=x<<3+x<<1

- Most compilers will automatically replace multiplications
with shifts where possible

Signed Division by a Power of 2

-x >> k computes x / 2% (rounded towards —oo)
+ =12 >> 2 = 11110100 >> 2 = 11111101 = -3

- C on Intel processors rounds towards O
+ =11 >> 2 == -3, but -11/4 == -2

- Solution: If x < 0, add 2%-1 before shifting

if (x < 0){
x += (1 << k) - 1;
}

return x >> k;

Exercise 6;: Feedback

1. Rate how well you think this recorded lecture worked

Better than an in-person class

About as well as an in-person class

Less well than an in-person class, but you still learned something
Total waste of time, you didn't learn anything

W

2. How much time did you spend on this video lecture
(including time spent on exercises)?

3. Do you have any comments or feedback?

