Lecture 3: Representing Signed Integers

CS 105
Fall 2020

Memory: A (very large) array of bytes

- Memory is an array offetito
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address

Base-2 Integers (aka Binary Numbers)

$$
128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)
$$

0
0
0
0
0
1
0
1

0
0
1
0
1
1
1
1

1
1
1
1
1
1
1
1

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
$+/-\quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)$

0	0	0	0	0	1	0	1
1	0	0	0	0	1	0	1

Representing Signed Integers

- Option 2: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue(w) - K
$128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right) \quad-128$

0
0
0
0

0
1
0

0
1
0
1

Representing Signed Integers

- Option 3: two's complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative
- $\operatorname{Signed}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{i=0}^{w-2} x_{i} \cdot 2^{i}$
$\begin{array}{lllll}-128\left(-2^{6}\right) & 64\left(2^{6}\right) & 32\left(2^{5}\right) & 16\left(2^{4}\right) & 8\left(2^{3}\right)\end{array} \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right)$

0	0	0
1	1	1
1	1	1

1

1
1
1
1
1
1
1

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always 11... 1 .
- Signed values range between TMin and TMax.

This representation of signed values is called two's complement.

Important Signed Numbers

	8	16	32	64
TMax	$0 \times 7 F$	$0 x 7 F F F$	$0 \times 7 F F F F F F F$	$0 x 7 F F F F F F F F F F F F F F F$
TMin	0×80	0×8000	0×80000000	$0 \times 8000000000000000$
0	0×00	0×0000	0×00000000	$0 \times 0000000000000000$
-1	$0 x F F$	$0 x F F F F$	$0 x F F F F F F F F$	$0 x F F F F F F F F F F F F F F F F$

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:

- What is the binary representation for 47 ?
- What is the hex representation for 47 ?
- What is the binary representation for -47 ?
- What is the hex representation for -47

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:
-What is the binary representation for 47 ? 00101111

- What is the hex representation for $47 ? 0 \times 2 \mathrm{~F}$
-What is the binary representation for -47 ? 11010001
- What is the hex representation for -47 0xD1

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types evaluates to $U 2 T_{k}\left(x \bmod 2^{k}\right)$
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
- Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int $\mathrm{x}=-17$; short sy $=-3$;
- Complete the following table

Expression	Decimal	Binary
,	-6	
-		101010
(unsigned int) x		
(int) sy		
TMax		
TMin		

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int $\mathrm{x}=-17$; short sy $=-3$;
- Complete the following table

Expression	Decimal	Binary
-	-6	111010
P-	-22	101010
(unsigned int) x	47	101111
(int) sy	-3	111101
TMax	31	011111
TMin	-32	100000

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
unsigned i;
for (i = cnt-2; i >= 0; i--) {
    a[i] += a[i+1];
}
```


Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators \&, I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators \&\&, ||, !
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Shift operators <<, >>
- Left shift fills with zeros
- For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- Assume signed one-byte integer values
- ~0xe2
- !0xe2
- 0x78 \& 0x55
- 0x78 । 0x55
- 0x78 \&\& 0x55
- 0x78 || 0x55
- $0 \times 96 \ll 4$
- 0x96 << 2
- 0x96 >> 4
- 0x96 >> 2

Exercise 3: Bitwise vs Logical Operations

- Assume signed char data type (one byte)
- ~0xe2
- !0xe2
- $0 x 78$ \& $0 \times 55=01111000 \& 01010101=01010000=0 \times 50$
- 0×78 | $0 \times 55=01111000$ | $01010101=01111101=0 \times 7 d$
- $0 \times 78 \& \& 0 \times 55=01111000 \& \& 01010101=00000001=0 \times 01$
- 0×78 || $0 \times 55=01111000$ || $01010101=00000001=0 \times 01$
- $0 \times 96 \ll 4=10010110 \ll 4=01100000=0 \times 60$
- $0 \times 96 \ll 2=10010110 \ll 2=01011000=0 \times 58$
- 0x96 >> $4=10010110 \gg 4=00001001=0 \times 09$
- $0 x 96 \gg 2=10010110 \gg 2=00100101=0 \times 25$

Addition Example

- Compute $5+-3$ assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
11 \\
0101 \\
+1101 \\
\hline 0010=2(\text { Base-10) }
\end{array}
$$

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

- Compute $5+3$ assuming all ins are stored as four-bit signed values

$$
\begin{array}{r}
111 \\
0101 \\
+0011 \\
\hline 1000=-8(\text { Base-10 })
\end{array}
$$

Error Cases

- Assume w-bit signed values

$\cdot x+{ }_{w}^{t} y=\left\{\begin{array}{lr}x+y-2^{w} & \text { (positive overflow) } \\ x+y & \text { (normal) } \\ x+y+2^{w} & \text { (negative overflow) }\end{array}\right.$
- overflow has occurred iff $x>0$ and $\mathrm{y}>0$ and $x+{ }_{w}^{t} y<0$ or $x<0$ and $\mathrm{y}<0$ and $x+{ }_{w}^{t} y>0$

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 4: Binary Addition

- Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101	00111	no
01100	00100	10000	yes
10100	10001	00101	yes

Multiplication Example

- Compute 3×2 assuming all ints are stored as four-bit signed values

Exactly like unsigned multiplication! ... except with different error cases

Multiplication Example

- Compute 5×2 assuming all ints are stored as four-bit signed values

$$
\begin{array}{r}
0101 \\
\times 0010 \\
\hline 0000 \\
+01010 \\
\hline 1010=-6(\text { Base-10 })
\end{array}
$$

Error Cases

- Assume w-bit unsigned values

- $x *_{w}^{t} y=U 2 T\left((x \cdot y) \bmod 2^{w}\right)$

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}^{*} \mathbf{y}$	overflow?
100	101		
010	011		
111	010		

Exercise 5: Binary Multiplication

- Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}^{*} \mathbf{y}$	overflow?
100	101	100	yes
010	011	110	yes
111	010	110	yes

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
- $x * 8=x \ll 3$
- x * $10=x \ll 3+x \ll 1$
- Most compilers will automatically replace multiplications with shifts where possible

Signed Division by a Power of 2

- $\mathbf{x} \gg \mathbf{k}$ computes $\mathbf{x} / 2^{\mathrm{k}}$ (rounded towards $-\infty$)

$$
\cdot-12 \gg 2=11110100 \gg 2=11111101=-3
$$

- C on Intel processors rounds towards 0
- $-11 \gg 2==-3$, but $-11 / 4==-2$
- Solution: If $x<0$, add $2^{k}-1$ before shifting

```
if (x < 0){
    x += (1 << k) - 1;
}
return x >> k;
```


Exercise 6: Feedback

1. Rate how well you think this recorded lecture worked
2. Better than an in-person class
3. About as well as an in-person class
4. Less well than an in-person class, but you still learned something
5. Total waste of time, you didn't learn anything
6. How much time did you spend on this video lecture (including time spent on exercises)?
7. Do you have any comments or feedback?
