Lecture 3: Representing Signed Integers

CS 105 Fall 2020

Memory: A (very large) array of bytes

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
 - Often expressed in hexadecimal
- We speak of the value in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

Base-2 Integers (aka Binary Numbers)

Representing Signed Integers

Option 1: sign-magnitude

+/-

One bit for sign; interpret rest as magnitude

Representing Signed Integers

- Option 2: excess-K
 - Choose a positive K in the middle of the unsigned range
 - SignedValue(w) = UnsignedValue(w) K

Representing Signed Integers

- Option 3: two's complement
 - Most commonly used
 - Like unsigned, except the high-order contribution is negative

•
$$Signed(x) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

-128 (-2⁶) 64 (2⁶) 32 (2⁵) 16 (2⁴) 8 (2³) 4 (2²) 2 (2¹) 1 (2⁰)

Example: Three-bit integers

unsigned		signed
111	7	
110	6	
101	5	
100	4	
011	3	011
010	2	010
001	1	001
000	0	000
	-1	111
	-2	110
	-3	101
	-4	100

- The high-order bit is the sign bit.
- The largest unsigned value is 11...1, UMax.
- The signed value for -1 is always
 11...1.
- Signed values range between TMin and TMax.

This representation of signed values is called *two's complement*.

Important Signed Numbers

	8	16	32	64
TMax	0x7F	0x7FFF	0x7FFFFFF	0x7FFFFFFFFFFFFF
TMin	0x80	0x8000	0×80000000	0x8000000000000000
0	0x00	0x0000	0x00000000	0×0000000000000000
-1	0xFF	0xFFFF	0xFFFFFFF	0xffffffffffffff

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:

- What is the binary representation for 47?
- What is the hex representation for 47?
- What is the binary representation for -47?
- What is the hex representation for -47

Exercise 1: Signed Integers

Assume an 8 bit (1 byte) signed integer representation:

What is the binary representation for 47?

What is the hex representation for 47?

0x2F

What is the binary representation for -47?

What is the hex representation for -47

0xD1

Casting between Numeric Types

- Casting from shorter to longer types preserves the value
- Casting from longer to shorter types evaluates to $U2T_k(x \mod 2^k)$
- Casting between signed/unsigned types preserves the bits (it just changes the interpretation)
- Implicit casting occurs in assignments and parameter lists. In mixed expressions, signed values are implicitly cast to unsigned
 - Source of many errors!

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;
- Complete the following table

Expression	Decimal	Binary
	-6	
		101010
(unsigned int) x		
(int) sy		
TMax		
TMin		

Exercise 2: Casting

- Assume you have a machine with 6-bit integers/3-bit shorts
- Assume variables: int x = -17; short sy = -3;
- Complete the following table

Expression	Decimal	Binary
	-6	111010
	-22	101010
(unsigned int) x	47	101111
(int) sy	-3	111101
TMax	31	011111
TMin	-32	100000

When to Use Unsigned

- Rarely
- When doing multi-precision arithmetic, or when you need an extra bit of range ... but be careful!

```
unsigned i;
for (i = cnt-2; i >= 0; i--){
    a[i] += a[i+1];
}
```

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, II, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Shift operators<<, >>
 - Left shift fills with zeros
 - For signed integers, right shift is arithmetic (fills with high-order bit)

Exercise 3: Bitwise vs Logical Operations

- Assume signed one-byte integer values
 - ~0xe2
 - !0xe2
 - 0x78 & 0x55
 - 0x78 | 0x55
 - 0x78 && 0x55
 - 0x78 || 0x55
 - \bullet 0x96 << 4
 - \cdot 0x96 << 2
 - 0x96 >> 4
 - 0x96 >> 2

Exercise 3: Bitwise vs Logical Operations

Assume signed char data type (one byte)

```
= \sim 11100010 = 00011101 = 0x1d
• ~0xe2
                 = !11100010 = 00000000 = 0x00

    !0xe2

                 = 01111000 \& 01010101 = 01010000 = 0 \times 50
• 0x78 & 0x55
                 = 01111000 \mid 01010101 = 01111101 = 0x7d
• 0x78 | 0x55
                 = 01111000 \&\& 01010101 = 00000001 = 0x01
• 0x78 && 0x55
                 = 01111000 \mid \mid 01010101 = 000000001 = 0x01
• 0x78 || 0x55
                 = 10010110 << 4 = 01100000 = 0x60
• 0x96 << 4
• 0 \times 96 << 2
                 = 10010110 << 2 = 01011000 = 0x58
• 0x96 >> 4
                 = 10010110 >> 4 = 00001001 = 0x09
                 = 10010110 >> 2 = 00100101 = 0x25
• 0x96 >> 2
```

Addition Example

 Compute 5 + -3 assuming all ints are stored as four-bit signed values

Exactly the same as unsigned numbers!
... but with different error cases

Addition/Subtraction with Overflow

 Compute 5 + 3 assuming all ints are stored as four-bit signed values

$$111$$
 0101
 $+0011$
 $1000 = -8 \text{ (Base-10)}$

Error Cases

Assume w-bit signed values

•
$$x +_{w}^{t} y = \begin{cases} x + y - 2^{w} & \text{(positive overflow)} \\ x + y & \text{(normal)} \\ x + y + 2^{w} & \text{(negative overflow)} \end{cases}$$

• overflow has occurred iff x > 0 and y > 0 and $x +_w^t y < 0$ or x < 0 and y < 0 and $x +_w^t y > 0$

Exercise 4: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

X	у	x+y	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 4: Binary Addition

 Given the following 5-bit signed values, compute their sum and indicate whether or not an overflow occurred

x	у	х+у	overflow?
00010	00101	00111	no
01100	00100	10000	yes
10100	10001	00101	yes

Multiplication Example

 Compute 3 x 2 assuming all ints are stored as four-bit signed values

$$0011$$
 0010
 0000
 $+00110$
 0110 = 6 (Base-10)

Exactly like unsigned multiplication! ... except with different error cases

Multiplication Example

 Compute 5 x 2 assuming all ints are stored as four-bit signed values

$$0101$$
 0000
 $+01010$
 $1010 = -6 \text{ (Base-10)}$

Error Cases

Assume w-bit unsigned values

•
$$x *_w^t y = U2T((x \cdot y) \mod 2^w)$$

Exercise 5: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

X	у	x*y	overflow?
100	101		
010	011		
111	010		

Exercise 5: Binary Multiplication

 Given the following 3-bit signed values, compute their product and indicate whether or not an overflow occurred

X	у	x*y	overflow?
100	101	100	yes
010	011	110	yes
111	010	110	yes

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
 - x * 8 = x << 3
 - x * 10 = x << 3 + x << 1

 Most compilers will automatically replace multiplications with shifts where possible

Signed Division by a Power of 2

- x >> k computes x / 2^k (rounded towards $-\infty$) • -12 >> 2 = 11110100 >> 2 = 11111101 = -3
- C on Intel processors rounds towards 0

```
-11 >> 2 == -3, but -11/4 == -2
```

• Solution: If x < 0, add 2^k-1 before shifting

```
if (x < 0) {
    x += (1 << k) - 1;
}
return x >> k;
```

Exercise 6: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any comments or feedback?