Lecture 2: Representing Integers

CS 105 Fall 2020

Abstraction

Memory: A (very large) array of bytes

- Memory is an array of bits
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
 - Often expressed in hexadecimal
- We speak of the value in memory at an address
 - The value may be a single byte ...
 - ... or a multi-byte quantity starting at that address

Representing Integers

- Arabic Numerals: 47
- Roman Numerals: XLVII
- Brahmi Numerals: せつ

Base-10 Integers

Storing bits

- Static random access memory (SRAM): stores each bit of data in a flip-flop, a circuit with two stable states
- Dynamic Memory (DRAM): stores each bit of data in a capacitor, which stores energy in an electric field (or not)
- Magnetic Disk: regions of the platter are magnetized with either N-S polarity or S-N polarity
- Optical Disk: stores bits as tiny indentations (pits) or not (lands) that reflect light differently
- Flash Disk: electrons are stored in one of two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)

Binary Numbers

Decimal (Base-10):

4211

$$= 4 \cdot 10^3 + 2 \cdot 10^2 + 1 \cdot 10^1 + 1 \cdot 10^0$$
$$= 4211$$

Binary (Base-2):

1011

$$= 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$
$$= 11$$

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?
 - 1. 0001
 - 2. 1010
 - 3. 0111
 - 4. 1111

Exercise 1: Binary Numbers

 Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?

```
1. 0001 = 0 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{1} = 1

2. 1010 = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{1} = 8 + 2 = 10

3. 0111 = 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{1} = 4 + 2 + 1 = 7

4. 1111 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{1} = 8 + 4 + 2 + 1 = 15
```

Binary Numbers

There are
10 types
of people
in the world:

Those who understand binary, and those who don't.

Exercise 2: Binary Number Range

- What are the max number and min number that can be represented by a w-bit binary number?
 - 1. w = 3
 - 2. w = 4
 - 3. w = 8

Exercise 2: Binary Number Range

 What are the max number and min number that can be represented by a w-bit binary number?

1.
$$W = 3$$
 $\min = 000_2 = 0_{10}$ $\max = 111_2 = 2^2 + 2^1 + 2^0 = 7_{10}$
2. $W = 4$ $\min = 0000_2 = 0_{10}$ $\max = 1111_2 = 2^3 + 2^2 + 2^1 + 2^0 = 15_{10}$
3. $W = 8$ $\min = 00000000_2 = 0_{10}$ $\max = 11111111_2 = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 255_{10}$

Unsigned Integers in C

C Data Type	Size (bytes)
unsigned char	1
unsigned short	2
unsigned int	4
unsigned long	8

ASCII characters

Char	Dec	Binary	Char	Dec	Bir									
!	33	00100001	1	49	00110001	Α	65	01000001	Q	81	01010001	а	97	0110
"	34	00100010	2	50	00110010	В	66	01000010	R	82	01010010	b	98	0110
#	35	00100011	3	51	00110011	С	67	01000011	S	83	01010011	С	99	0110
\$	36	00100100	4	52	00110100	D	68	01000100	Т	84	01010100	d	100	0110
%	37	00100101	5	53	00110101	Е	69	01000101	U	85	01010101	е	101	0110
&	38	00100110	6	54	00110110	F	70	01000110	V	86	01010110	f	102	0110
'	39	00100111	7	55	00110111	G	71	01000111	W	87	01010111	g	103	0110
(40	00101000	8	56	00111000	Н	72	01001000	Х	88	01011000	h	104	0110
)	41	00101001	9	57	00111001	1	73	01001001	Υ	89	01011001	i	105	0110
*	42	00101010	:	58	00111010	J	74	01001010	Z	90	01011010	j	106	0110
+	43	00101011	•	59	00111011	K	75	01001011	[91	01011011	k	107	0110
,	44	00101100	<	60	00111100	L	76	01001100	\	92	01011100	1	108	0110
-	45	00101101	=	61	00111101	М	77	01001101]	93	01011101	m	109	0110
	46	00101110	>	62	00111110	N	78	01001110	۸	94	01011110	n	110	0110
/	47	00101111	?	63	00111111	0	79	01001111	_	95	01011111	0	111	0110
0	48	00110000	@	64	01000000	Р	80	01010000	,	96	01100000	р	112	0111

Hexidecimal Numbers

0x2c3530e1

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	а
11	b
12	С
13	d
14	е
15	f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?
 - 1. 0x0a
 - 2. 0x11
 - 3. 0x2f

Exercise 3: Hexidecimal Numbers

 Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?

```
1. 0x0a = 00001010_2 = 10_{10}
2. 0x11 = 00010001_2 = 17_{10}
3. 0x2f = 00101111_2 = 47_{10}
```

Endianness

47 vs 74

BIG ENDIAN - The way people always broke their eggs in the Lilliput land

LITTLE ENDIAN - The way the king then ordered the people to break their eggs

Endianness

- Big Endian: low-order bits go on the right (47)
 - I tend to think in big endian numbers, so examples in class will generally use this representation
 - Networks generally use big endian (aka network byte order)
- Little Endian: low-order bits go on the left (74)
 - Most modern machines use this representation
- I will try to always be clear about whether I'm using a big endian or little endian representation
- When in doubt, ask!

Arithmetic Logic Unit (ALU)

 circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators &, I, ~, ^
 - View arguments as bit vectors
 - operations applied bit-wise in parallel
- Logical Operators &&, II, !
 - View 0 as "False"
 - View anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Shift operators<<, >>
 - Left shift fills with zeros
 - For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

- Assume one byte (8 bit) unsigned integer values
 - ~226
 - · !226
 - · 120 & 85
 - 120 | 85
 - 120 && 85
 - 120 | | 85
 - 81 << 4
 - 81 << 2
 - 81 >> 4
 - 81 >> 2

Exercise 4: Bitwise vs Logical Operations

Assume unsigned char data type (one byte)

```
= \sim 11100010 = 00011101 = 0x1d
• ~226
                 = !11100010 = 000000000 = 0x00
• !226
                 = 01111000 \& 01010101 = 01010000 = 0x50
· 120 & 85
                 = 01111000 \mid 01010101 = 01111101 = 0x7d
• 120 | 85

    120 && 85

                 = 01111000 \&\& 01010101 = 00000001 = 0x01

    120 | | 85

                 = 01111000 \mid \mid 01010101 = 00000001 = 0x01
81 << 4</li>
                 = 01010001 << 4 = 00010000 = 0x10
81 << 2</li>
                 = 01010001 << 2 = 01000100 = 0x44
• 81 >> 4
                 = 01010001 >> 4 = 00000101 = 0x05
• 81 >> 2
                 = 01010001 >> 2 = 00010100 = 0x14
```

Example: Using Bitwise Operations

```
x & 1 "x is odd"
(x + 7) & 0xFFFFFFFF "round up to a multiple of 8"
x << 2 "multiply by 4"</li>
```

Addition Example

Compute 5 + 6 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$\begin{array}{r}
1 \\
00000101 \\
+00000110 \\
00001011 = 11 \text{ (Base-10)}
\end{array}$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example with Overflow

 Compute 200 + 100 assuming all ints are stored as eightbit (1 byte) unsigned values

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

Assume w-bit unsigned values

•
$$x +_{w}^{u} y = \begin{cases} x + y & \text{(normal)} \\ x + y - 2^{w} & \text{(overflow)} \end{cases}$$

• overflow has occurred iff $x +_w^u y < x$

Exercise 5: Binary Addition

 Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

X	у	x+y	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 5: Binary Addition

 Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

X	у	х+у	overflow?
00010	00101	00111	no
01100	00100	10000	no
10100	10001	00101	yes

Multiplication Example

Compute 5 x 6 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$\begin{array}{c} 00000101 \\ \times 00000110 \\ 00000000 \\ 00001010 \\ +0000010100 \\ \hline 00011110 = 30 \text{ (Base-10)} \end{array}$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example

 Compute 200 x 3 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$\begin{array}{c}
11001000 \\
 \times 00000011 \\
 \hline
 11001000 \\
 + 11001000 \\
\hline
 1001011000 = 88 \text{ (Base-10)}
\end{array}$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

Assume w-bit unsigned values

•
$$x *_w^u y = (x \cdot y) \mod 2^w$$

Exercise 6: Binary Multiplication

 Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

X	у	x*y	overflow?
100	101		
010	011		
111	010		

Exercise 6: Binary Multiplication

 Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

X	у	x*y	overflow?
100	101	100	yes
010	011	110	no
111	010	110	yes

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
 - x * 8 = x << 3
 - x * 10 = x << 3 + x << 1

Most compilers will automatically replace multiplications with shifts where possible

Exercise 7: Feedback

- 1. Rate how well you think this recorded lecture worked
 - 1. Better than an in-person class
 - 2. About as well as an in-person class
 - 3. Less well than an in-person class, but you still learned something
 - Total waste of time, you didn't learn anything
- 2. How much time did you spend on this video lecture (including time spent on exercises)?
- 3. Do you have any comments or feedback?