Lecture 2: Representing Integers

CS 105
Fall 2020

Abstraction

Memory: A (very large) array of bytes

- Memory is an array offetito
- A byte is a unit of eight bits
- An index into the array is an address, location, or pointer
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address

Representing Integers

- Arabic Numerals: 47
- Roman Numerals: XLVII
- Brahmi Numerals: Hつ

Base-10 Integers

Storing bits

- Static random access memory (SRAM): stores each bit of data in a flip-flop, a circuit with two stable states
- Dynamic Memory (DRAM): stores each bit of data in a capacitor, which stores energy in an electric field (or not)
- Magnetic Disk: regions of the platter are magnetized with either N-S polarity or S-N polarity
- Optical Disk: stores bits as tiny indentations (pits) or not (lands) that reflect light differently
- Flash Disk: electrons are stored in one of two gates separated by oxide layers

Base-2 Integers (aka Binary Numbers)

$$
128\left(2^{7}\right) \quad 64\left(2^{6}\right) \quad 32\left(2^{5}\right) \quad 16\left(2^{4}\right) \quad 8\left(2^{3}\right) \quad 4\left(2^{2}\right) \quad 2\left(2^{1}\right) \quad 1\left(2^{0}\right)
$$

0
0
0
0
0
1
0
1

0
0
1
0
1
1
1
1

1
1
1
1
1
1
1
1

Binary Numbers

- Decimal (Base-10):

4211

$$
\begin{gathered}
=4 \cdot 10^{3}+2 \cdot 10^{2}+1 \cdot 10^{1}+1 \cdot 10^{0} \\
=4211
\end{gathered}
$$

- Binary (Base-2):

1011

$$
\begin{gathered}
=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} \\
=11
\end{gathered}
$$

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?

1. 0001
2. 1010
3. 0111
4. 1111

Exercise 1: Binary Numbers

- Consider the following four-bit binary values. What is the (base-10) integer interpretation of these values?

1. $0001=0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{1}=1$
2. $1010=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{1}=8+2=10$
3. $0111=0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{1}=4+2+1=7$
4. $1111=1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{1}=8+4+2+1=15$

Binary Numbers

$$
\begin{gathered}
\text { There are } \\
10 \text { types } \\
\text { of people } \\
\text { in the world: } \\
\text { Those who } \\
\text { understand binary, } \\
\text { and those } \\
\text { who don't. }
\end{gathered}
$$

Exercise 2: Binary Number Range

- What are the max number and min number that can be represented by a w-bit binary number?

1. $w=3$
2. $w=4$
3. $w=8$

Exercise 2: Binary Number Range

- What are the max number and min number that can be represented by a w-bit binary number?

1. $w=3 \quad \min =000_{2}=0_{10}$

$$
\begin{aligned}
& \max =111_{2}=2^{2}+2^{1}+2^{0}=7_{10} \\
& \begin{aligned}
\max =1111_{2}=2^{3}+2^{2}+2^{1}+2^{0}=15_{10} \\
\begin{aligned}
\max =11111111_{2} & =2^{7}+2^{6}+2^{5}+2^{4} \\
& +2^{3}+2^{2}+2^{1}+2^{0} \\
& =255_{10}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

2. $w=4 \quad \min =0000_{2}=0_{10}$

$$
w=8 \quad \min =00000000_{2}=0_{10} \quad \max =11111111_{2}=2^{7}+2^{6}+2^{5}+2^{4}
$$

Unsigned Integers in C

C Data Type	Size (bytes)
unsigned char	1
unsigned short	2
unsigned int	4
unsigned long	8

ASCII characters

Char	Dec	Binary	Char	Dec	Bi									
!	33	00100001	1	49	00110001	A	65	01000001	Q	81	01010001	a	97	01
"	34	00100010	2	50	00110010	B	66	01000010	R	82	01010010	b	98	01
\#	35	00100011	3	51	00110011	C	67	01000011	S	83	01010011	c	99	01
\$	36	00100100	4	52	00110100	D	68	01000100	T	84	01010100	d	100	01
\%	37	00100101	5	53	00110101	E	69	01000101	U	85	01010101	e	101	01
\&	38	00100110	6	54	00110110	F	70	01000110	V	86	01010110	f	102	01
'	39	00100111	7	55	00110111	G	71	01000111	W	87	01010111	g	103	0
(40	00101000	8	56	00111000	H	72	01001000	X	88	01011000	h	104	01
)	41	00101001	9	57	00111001	1	73	01001001	Y	89	01011001	i	105	01
*	42	00101010	:	58	00111010	J	74	01001010	Z	90	01011010	j	106	01
+	43	00101011	;	59	00111011	K	75	01001011	[91	01011011	k	107	01
,	44	00101100	<	60	00111100	L	76	01001100	1	92	01011100	1	108	01
-	45	00101101	=	61	00111101	M	77	01001101]	93	01011101	m	109	01
	46	00101110	>	62	00111110	N	78	01001110	\wedge	94	01011110	n	110	01
1	47	00101111	?	63	00111111	0	79	01001111	-	95	01011111	0	111	01
0	48	00110000	@	64	01000000	P	80	01010000		96	01100000	p	112	01

Hexidecimal Numbers

00101100	00110101	00110000	11100001
2 C	35	3	e 1

$0 \times 2 c 3530 e 1$

Dec	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	a
11	b
12	c
13	d
14	e
15	f

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?

1. $0 \times 0 a$
2. 0×11
3. $0 \times 2 f$

Exercise 3: Hexidecimal Numbers

- Consider the following hexidecimal values. What is the representation of each value in (1) binary and (2) decimal?

$$
\begin{array}{lll}
\text { 1. } & 0 \times 0 \mathrm{a} & =00001010_{2}=10_{10} \\
\text { 2. } & 0 \times 11=00010001_{2}=17_{10} \\
\text { 3. } & 0 \times 2 \mathrm{f} & =00101111_{2}=47_{10}
\end{array}
$$

Endianness

47 vs 74

BIG Endian - The way people always broke their egga in the Lilliput land

LITTLE ENDIAN - The
way the king then
ordezed the people to
break their egge

Endianness

- Big Endian: low-order bits go on the right (47)
- I tend to think in big endian numbers, so examples in class will generally use this representation
- Networks generally use big endian (aka network byte order)
- Little Endian: low-order bits go on the left (74)
- Most modern machines use this representation
- I will try to always be clear about whether I'm using a big endian or little endian representation
- When in doubt, ask!

Arithmetic Logic Unit (ALU)

- circuit that performs bitwise operations and arithmetic on integer binary types

Bitwise vs Logical Operations in C

- Bitwise Operators \& I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators \&\&, II, !
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Shift operators <<, >>
- Left shift fills with zeros
- For unsigned integers, right shift is logical (fills with zeros)

Exercise 4: Bitwise vs Logical Operations

- Assume one byte (8 bit) unsigned integer values
-~226
-!226
- 120 \& 85
- 120 | 85
- 120 \&\& 85
- 120 || 85
- $81 \ll 4$
- $81 \ll 2$
- 81 >> 4
- $81 \gg 2$

Exercise 4: Bitwise vs Logical Operations

- Assume unsigned char data type (one byte)
- $\sim 226=\sim 11100010=00011101=0 \times 1 \mathrm{~d}$
-!226 = ! $11100010=00000000=0 \times 00$
$\cdot 120 \& 85=01111000 \& 01010101=01010000=0 \times 50$
- 120 | $85=01111000$ | $01010101=01111101=0 x 7 d$
- 120 \&\& $85=01111000 \& \& 01010101=00000001=0 \times 01$
- 120 || $85=01111000$ || $01010101=00000001=0 \times 01$
- $81 \ll 4$
$=01010001 \ll 4=00010000=0 \times 10$
- $81 \ll 2$
$=01010001 \ll 2=01000100=0 \times 44$
- $81 \gg 4=01010001 \gg 4=00000101=0 \times 05$
- $81 \gg 2=01010001 \gg 2=00010100=0 \times 14$

Example: Using Bitwise Operations

$\cdot x \& 1$ " x is odd"

- $(x+7) \& 0 \times F F F F F F 8$ "round up to a multiple of 8 "
- $x \ll 2$
"multiply by 4"

Addition Example

- Compute $5+6$ assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
1 \\
00000101 \\
+00000110 \\
\hline 00001011=11(\text { Base-10 })
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example with Overflow

- Compute $200+100$ assuming all ints are stored as eightbit (1 byte) unsigned values

$$
\begin{array}{r}
11 \\
11001000 \\
+01100100 \\
\hline 00101100=44(\text { Base-10) }
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

$\cdot x+{ }_{w}^{u} y=\left\{\begin{array}{lr}x+y & \text { (normal) } \\ x+y-2^{w} & \text { (overflow) }\end{array}\right.$
- overflow has occurred iff $x+{ }_{w}^{u} y<x$

Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101		
01100	00100		
10100	10001		

Exercise 5: Binary Addition

- Given the following 5-bit unsigned values, compute their sum and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	overflow?
00010	00101	00111	no
01100	00100	10000	no
10100	10001	00101	yes

Multiplication Example

- Compute 5×6 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
00000101 \\
\times 00000110 \\
\hline 00000000 \\
000001010 \\
+0000010100 \\
\hline 00011110
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Addition Example

- Compute 200×3 assuming all ints are stored as eight-bit (1 byte) unsigned values

$$
\begin{array}{r}
11001000 \\
\times 00000011 \\
\hline 11001000 \\
+110010000 \\
\hline 1001011000=88(\text { Base-10) }
\end{array}
$$

Like you learned in grade school, only binary!
... and with a finite number of digits

Error Cases

- Assume w-bit unsigned values

- $x *_{w}^{u} y=(x \cdot y) \bmod 2^{w}$

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x} \mathbf{y}$	overflow?
100	101		
010	011		
111	010		

Exercise 6: Binary Multiplication

- Given the following 3-bit unsigned values, compute their product and indicate whether or not an overflow occurred

\mathbf{x}	\mathbf{y}	$\mathbf{x} \mathbf{y}$	overflow?
100	101	100	yes
010	011	110	no
111	010	110	yes

Multiplying with Shifts

- Multiplication is slow
- Bit shifting is kind of like multiplication, and is often faster
- $x * 8=x \ll 3$
- x * $10=x \ll 3+x \ll 1$
- Most compilers will automatically replace multiplications with shifts where possible

Exercise 7: Feedback

1. Rate how well you think this recorded lecture worked
2. Better than an in-person class
3. About as well as an in-person class
4. Less well than an in-person class, but you still learned something
5. Total waste of time, you didn't learn anything
6. How much time did you spend on this video lecture (including time spent on exercises)?
7. Do you have any comments or feedback?
