CS105 - Computer Systems Spring 2020
Assignment 3: Debugger Lab
Due: Tuesday, September 15, 2020 at 11:59pm

The purpose of this lab is to introduce you to the GDB debugger and to give you practice using this
debugger to read, run, and debug programs in C and assembly. As with future labs, you should work in
teams of two. Your partner will be assigned for this assignment.

This assignment will need to be completed on the course VM. If neither you nor your partner are able
to access the VM, please put your name in the queue and get help from the course staff immediately. To
get started, connect to the VPN, ssh to the course VM, and copy the files to your local directory on the
VM.

Step 1: Connect to the Pomona VPN. If you do not already have the Pomona VPN set up on your ma-
chine, there are instructions for how to set-up the VPN here: https://www.pomona.edu/administration/
its/help/vpn

Step 2: ssh into the course VM using the following command
% ssh username@pom-itb-cs2.campus.pomona.edu

(use your Pomona CAS username and password).

Step 3: Copy the starter code to your local directory and unpack it.

% cp /data/debuggerlab.tar .
% tar xvf debuggerlab.tar

You will now have a directory debuggerlab-handout which contains a Makefile, and three short C
programs.

1 Data Representations in the Debugger

C has a commandline debugger called GDB (GNU Debugger). This is a very useful tool that you will
come to know and love (or hate) this semester. For your first problem, you will use GDB to look at data
at the bit- and byte-level.

Before we get started, open the file q1. c and take a look. This file contains three static constants and
a short main function (our old friend, HelloWorld). The function is only there so that the program will
compile; in this problem we are only concerned with the date. Compile the code using the Makefile
(make ql or make). Note that we are compiling this program with the debugger flag —g. This is
important for getting anything useful out of GDB.

Create a file called q1.txt, and put your answers to the following questions in it. Be sure put your
name and your partner’s name at the top of the file!

To get started, run your compiled program in GDB using the command gdb q1.

3-1

. print. gdb provides you lots of ways to look at memory. For example, the command print will
print the value in a variable. Try typ “print puzzlel”. What is printed? Note that you can
explicitly tell GDB how to interpret bytes in memory by adding a / after the command print (or
its shortcut p) followed by a format. What do you get when you try “p/x puzzlel1”? Is that more
edifying? Note: for future references, there are several other format you can use: x, d, u, o,
t, a, c, f (see GDB Quick Reference on the course website for details).

. examine. So far, you’ve looked at puzzlel in decimal and hex. There’s also a way to treat it as a
string, although the notation is a bit inconvenient. Recall that strings are just arrays of characters
stored in memory, and that a “string” variable really only stores the address of (aka. a pointer to)
the first character in the string. To try interpreting puzzlel as a string, we therefore need a way
to look at (and interpret) the bytes in memory at address &puzzlel (recall that the “&” symbol
means “address of”’). The “x” (examine) command lets you look at arbitrary memory in a variety
of formats and notations. This command takes three “arguments” after the /: the number of units
you want to interpret, the size of each unit (b = one byte, h = 2 bytes, w = 4 bytes, g = 8 bytes),
and the format you want to interpret each unit in (same format options as for print plus s and 1i).
For example, “x/1bx” examines 1 unit of one byte interpreted as a hexadecimal value. Let’s give
this a try. Type “x/4bx &puzzlel”. How does the output you see relate to the result of “p/x
puzzlel”? (Incidentally, you can look at any arbitrary memory location with x, as in “x/1wx
0x8048500™.)

. puzzlel. OK, that was interesting (and maybe a bit weird), but we still don’t know what’s in
puzzlel. Using what you know so far about GDB and about how value are represented, figure out
what is the human-friendly value of puzzle1? Don’t accept an answer that is partially garbage!

Hint: Although puzzlel is declared as an int, it’s not. But on our machine an int is 4 bytes,
and those bytes could be interpreted as a different value of some other type.

Hint: The most efficient way to do this is probably to on puzzlel with various forms of the
x command. For example, you might try “x/16i &puzzlel” to display the bytes of memory
starting at &puzzlel interpreted as a sequence of 16 assembly instructions.

Hint: If you need help, gdb has help built in. Type “help x” to see more information about the
options for the examine command.

. puzzle2. Now we can move on to puzzle2. It pretends to be an array of ints, but you might
suspect that it isn’t. Using your newfound skills, figure out what is the human-friendly value?
Hint: Since there are two ints, the entire value occupies 8 bytes.

. puzzle3. We have one puzzle left. By this point you may have already stumbled across its value.

If not, figure it out; it’s often the case that in a debugger you need to make sense of apparently
random data. What is stored in puzzle3?

3-2

2 Running Code in GDB

Create a file called g2.txt, and put your answers to the questions in Part A and Part B in it. Be sure to
put both your name and your partner’s name at the top of the file!

Part A

g2a.c contains a function that has a small while loop, and a simple main that calls it. Briefly study the
loop_while function to understand how it works.

It will be useful to know what the atoi function (pronounced “a to i”’) does. Type “man atoi” in a
terminal window to find out.

Compile the program using the Makefile (note that the debugger flag —g is set again). Run gdb q2a and
set a breakpoint in main (“b main”). Tell gdb not to debug the atoi function by typing skip atoi

(yes, ignore function pending future shared library load). Run the program by typing “r” or “run”. The
program will stop in main.

Then answer the following questions in your q2. txt file:

Note: to help you keep track of what you’re supposed to doing, we have used italics to list the break-
points you should have already set at the beginning of each step—except when they don’t matter.

1. Existing breakpoint at main.

Type “c” (or “continue’”) to continue past the breakpoint. What happens?

2. Existing breakpoint at main.
Type “bt” (or “backtrace”) to get a trace of the call stack and find out how you got where you
are. What file and line number are you on?

Note: Take note of the numbers in the left column. If you type “up n”, where n is one of those
numbers, you get to the stack frame corresponding to one of your function calls so that you can
look at that function’s variables. For example, you could try “up 3” followed by “x/s argv[0]”
to see the Oth argument to main. (In general, you can use up and down to move up or down one
frame in the stack.)

3. Existing breakpoint at main.
Usually when bad things happen in the library it’s your fault, not the library’s. In this case, the
problem is that main passed a bad argument to atoi. There are two ways to find out what the
bad argument is: look at atoi’s stack frame (more on this next week!), or print the argument.
Rerun the program by typing “r” and let it stop at the breakpoint. Note that atoi is called with
the argument “argv [1]”, sou can find out the value that was passed to atoi with the command
“print argv[1]”. What is printed? Given what you’ve discovered, why do you think the pro-

gram segfaulted in step 1?

4. Existing breakpoint at main.
Rerun the program with an argument of 5 by typing “r 5”. Continue from the the breakpoint.
What does the program print?

3-3

5. Existing breakpoint at main.
Without restarting gdb, type “r” (without any further parameters) to run the program yet again.
(If you restarted gdb, you must first repeat Step 4.) When you get to the breakpoint, examine the
variables argc and argv by using the print command. For example, type “print argv[0].”
Also try “print argv[0]@argc”, which is gdb’s notation for saying “print elements of the argv
array starting at element 0 and continuing for argc elements.” What is the value of argc? What
are the elements of the argv array? Where did they come from, given that you didn’t add anything

to the run command?

6. Existing breakpoint at main.
The step or s command is a useful way to follow a program’s execution one line at a time. Type
“s”. Where do you wind up?

7. Existing breakpoint at main.
gdb always shows you the line that is about to be executed. Sometimes it’s useful to see some
context. Type “l1ist” What lines do you see? Hit the return key. What do you see now?

8. Existing breakpoint at main.

Enter “s” to step to the next line. Then hit the return key three times. What do you think the
return key does?

9. Existing breakpoint at main.
What are the current values of result, a, and b?

Type “quit” to exit gdb. (You’ll have to tell it to kill the “inferior process”, which is the program you
are debugging.)

Part B

Look at the file g2b. ¢ This file contains three functions. Read the functions and figure out what they do.
(If you’re new to C, you might need to consult a C book, some online references, and/or the course staff.)
Here are some hints: recall that argv is an array containing the strings that were passed to the program
on the command line (or from gdb’s run command); argc is the number of arguments that were passed.
By convention, argv [0] is the name of the program, so argc is always at least 1. The malloc line
allocates a variable-sized array big enough to hold argc integers (which is slightly wasteful, since we
only store argc-1 integers there, but ~_()_/").

Once you understand what this code is doing, answer the following questions in your q2.txt file:

1. Open g2b in GDB. Set a breakpoint in fix_array. Run the program with the arguments 1 1
2 3 58 13 21 44 65. When it stops, print a_size and verify that it is 10. Did you really
need to use a print command to find the value of a_size? (Hint: look carefully at the output
produced by gdb.)

2. Existing breakpoint at fiz_array.
What is the value of a?

34

3. Existing breakpoint at fiz_array.
Type “display a” to tell gdb that it should display a every time you stop. Step six times. You’ll
note that one of the lines executed is a right curly brace; this is common when you’re in gdb and
often indicates the end of a loop or the return from a function. After returning, what is the value
of a?

4. Existing breakpoint at fiz_array.
Step again (a seventh time). What is the value of a now? What is 1?

5. Existing breakpoint at fiz_array.

At this point you should (again) be at the call to hmc_pomona_fix. You already know what that
function does, and stepping through it is a bit of a pain. The authors of debuggers are aware of that
fact, and they always provide two ways to step line-by-line through a program. The one we’ve
been using (step) is traditionally referred to as “step into”—if you are at the point of a function
call, you move stepwise info the function being called. The alternative is “step over’—if you
are at a normal line it operates just like step, but if you are at a function call it does the whole
function just as if it were a single line. Let’s try that now. In gdb, it’s called next or just n. What
line do we wind up at? (Incidentally, in gdb as in most debuggers, the line shown is the next line
to be executed.)

6. Existing breakpoint at fiz_array.
Use n to step past that line, verifying that it works just like s when you’re not at a function call.
What’s a now?

7. Existing breakpoint at fiz_array.
It’s often useful to be able to follow pointers. gdb is unusually smart in this respect; you can type
complicated expressions like p *a.b->c[i].d->e. (Recall that * dereferences a pointer. The .
symbol access a field in a struct, and x->y is a shortcut for (*x) .y) By this point, we have kind
of lost track of a, and we just want to know what it’s pointing at. Type “p *a”. What do you get?

8. Existing breakpoint at fiz_array.
Often when debugging, you know that you don’t care about what happens in the next three or
twelve lines. You could type “s” or “n” that many times, but we’re computer scientists, so we
might prefer to avoid doing work that computers could do for us—especially mentally taxing

tasks like counting to twelve. So on a guess, type “next 12”. What line are you at?

9. Existing breakpoint at fiz_array.
What is the value of a now?

10. Existing breakpoint at fiz_array.
What is the value of *a?

3 Assembly-level Debugging

Usually you will be able to debug your programs using only the C source code, but sometimes it’s
necessary to inspect the assembly code. For this part, we will again use the program g2b. c from the

3-5

previous problem. To be sure we’re all on the same page, assemble that program using the Makefile
(“make g3”) and bring it up with gdb g3.

Create a file called q3.txt and put your answers to the following questions there. Be sure to put both
your names at the top of the file!

1. Set a breakpoint in main. Run the program with arguments of 1 42 2 47 3. Where does it stop?
Type “list” to see what’s nearby, then type “b 29” and “c”. Where does it stop now?

2. Existing breakpoints at main lines 26 and 29.

So since that’s the start of the loop, typing “c” will take you to the next iteration, right? Oops.
Good thing we can start over by just typing “r”. Continue past that first breakpoint to the second
one, which is what we care about. But why, if we’re in the for statement, didn’t it stop the
second time? Type “info b” (or “info breakpoints” for the terminally verbose). Lots of
good stuff there. The important thing is in the “address” column. Take note of the address given
for breakpoint 2, and then type “disassem main”. You’ll note that there’s a helpful little arrow
right at breakpoint 2’s address, since that’s the instruction we’re about to execute. Looking back at
the corresponding source code, what part of the for statement does this assembly code correspond
to?

3. Existing breakpoints at matin lines 26 and 29.

The code at +33 jumps to main+68, which has two instructions that jump back to main+35.
This is all part of the loop pattern we covered in class (in this case, a for). We’ve successfully
breaked (“broken?” “Set a breakpoint?”) at the initialization of the loop. But we’d like to have
a breakpoint inside the for loop, so we could stop on every iteration. The jump to main+35 tells
us that we want to stop there. But that’s not a source line; it’s in the middle clause of the for
statement. No worries, though, because gdb will let us set a breakpoint on any instruction even
if it’s in the middle of a statement. Just type “b *(main+35)” or “b *0x400677” (assuming
that’s the address of main+35, as it was when I wrote these instructions). The asterisk tells gdb
to interpret the rest of the command as an address in memory, as opposed to a line number in the
source code. What does “info b” tell you about the line number you chose? (Fine, we could
have just set a breakpoint at that line. But there are more complicated situations where there isn’t
a simple line number, so it’s still useful to know about the asterisk.)

4. Existing breakpoints at main lines 26 and 29, and instruction main+35.
We can look at the current value of the array by typing “p array[0]@argc”. But the current
value isn’t interesting. Let’s continue a few times and see what it looks like then. Typing “c” over
and over is tedious (especially if you need to do it 10,000 times!) so let’s continue to breakpoint

3 and then try “c 4”. What are the full contents of array?

5. Existing breakpoints at main lines 26 and 29, and instruction main+35.
Perhaps we wish we had done “c 3” instead of “c 4”. We can rerun the program, but we really
don’t need all the breakpoints; we’re only working with breakpoint 3. Type “info b” to find out
what’s going on right now. Then use “d 1” or “delete 1” to completely get rid of breakpoint
1. But maybe breakpoint 2 will be useful in the future, so type “disable 2”. Use “info b”
to verify that it’s no longer enabled (“Enb”). Continue past breakpoint 3, where we’re stopped.
Where do we stop next? (Hopefully that wasn’t too much of a surprise!)

3-6

6. Sometimes, instead of stepping through a program line by line, we want to see what the individual
instructions do. Of course, instructions manipulate registers. Quit gdb and restart it, setting
a breakpoint in fix_array. Run the program with arguments of 1 42 2 47 3. Type “info
registers” to see all the processor registers in both hex and decimal. What flags are set right
now? Note: sometimes it is not necessary to see all the registers. You can use the print commands
p or p/x to print the value of an individual register (just remember to put a $ in front of the register
name).

7. Existing breakpoint at fiz_array.
In question 1, we looked at lots of different ways to interpret data, but there is one that we didn’t
use: x/1i. I particularly like “x/16i $rip”. Try this command: what do you see? Compare that
to the result of “disassem fix_array”.

8. Existing breakpoint at fiz_array.
Finally, we mentioned stepping by instructions. That’s done with “stepi” (“step one instruc-
tion”). Type that now, and note that gdb gives a new instruction address but still says that you’re
in the for loop. Hit return to stepi again, and keep hitting return until the displayed line doesn’t
contain a hexadecimal instruction address. Where are you?

9. Existing breakpoint at fiz_array.
It’s useful to use “x/16i $rip” or disassem fix_array here to make sure we understand
what’s about to happen. You should see a mov instruction followed by an absolute jump, followed
by a conditional jump, followed by another mov followed by a call. Use stepi 5 to get past all
of this. What instruction address will be executed next?

10. Existing breakpoint at fiz_array.
As with source-level debugging, at the assembly level it’s often useful to skip over function calls.
At this point you have a choice of typing “stepi” or “nexti”. If you type “stepi”, what do you
expect the next instruction to be (hexadecimal address)? What about “nexti”? (By now, your
debugging gdb skills should be strong enough that you can try one, restart the program, and try
the other if you want to.)

And now you know everything you need to know about debugging with GDB!

4 Feedback

Please create a file called feedback. txt that answers the following questions:

1. How long did each of you spend on this assignment?

2. Any comments on this assignment?

How you answer these questions will not affect your grade, but whether you answer them will.

3-7

Submission

You should submit four files on the course submission page: q1.txt, q2.txt, 93.txt, and feedback. txt.
Before you do so, double check that both your name and your partner’s name are at the top of all the
files.

Only one member should submit your solution files, and all files should be submitted together in a a
single submission (hint: command-click is your friend). You may, of course, submit updates to your
work; just be sure that everything is submitted by the same team member. All three problems on this
assignment will be weighted equally; you will get 2 points for submitting your feedback file. Your score
will be based on a total of 32 points.

3-8

