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Lecture 24: Distributed Systems



What is a distributed system?
• A distributed system is a collection of 

autonomous computing elements that 
appears to its users as a single, coherent 
system

• A distributed system is several 
computers doing something together. 
Thus, a distributed system has three 
primary characteristics: multiple 
computers, interconnections, and shared 
state. 



Why not just use one computer?

• computers fail 

• limited resources

• physical location

• nonuniform hardware



Example: Cluster Computing

• cluster computing is use for parallel programming in which a single 
(compute intensive) program is run in parallel on multiple machines

• Master node provides interface for users and is responsible for task 
scheduling

• Examples: MOSIX, MapReduce, Hadoop
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Example: Distributed File Systems

• files are divided into fixed-size chunks and stored on chuck 
servers

• each chunk is replicated
• master server stores chunk metadata
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Properties we want

• Transparency: Hide that resource is physically 
distributed across multiple computers 

• Consistency: appears as all one system

• Reliability: system doesn't go down/go wrong when 
component(s) fail

• Scalability: can grow (add more nodes, memory, etc.)



Replication
• In distributed systems, data are typically replicated

• increases reliability
• improves scalability
• reduces latency for global systems

• Problem: how do you ensure consistency when data are 
replicated?



The Model
• Shared data is kept in a data store

• a register, a file system, a database, a distributed file system, a 
distributed key-value store 

• Clients access the data store through read and write 
operations 

• Consistency Semantics: a contract between the data 
store and its clients that specifies the results that clients 
can expect to obtain when accessing the data store 
• sequential consistency
• causal consistency 
• eventual consistency



Sequential Consistency
• “The result of any execution is the same as if the 

operations of all the processes were executed in some 
sequential order and the operations of each individual 
process appear in this sequence in the order specified by 
its program” (Lamport, 1979) 

• In other words: create a total order that includes all the 
operations of the execution, such that: 
• the total order respects the local history of each process 
• every read returns the result of the latest write, according to the 

total order (data coherence) 



Example: Sequential Consistency

• Is this data store sequentially consistent?

P1: W(x): a
P2: W(x): b
P3: R(x): b R(x): a
P4: R(x): b R(x): a
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Example: Sequential Consistency

• Is this data store sequentially consistent?

P1: W(x): a
P2: W(x): b
P3: R(x): b R(x): a
P4: R(x): a R(x): b



Exercise: Sequential Consistency

• Is this data store sequentially consistent?

P1: W(x): a W(x): c
P2: R(x): a W(x): b
P3: R(x): a R(x): c R(x): b
P4: R(x): a R(x): b R(x): c



Causal Consistency
• Writes that are potentially causally related must be seen 

by all processes in the same order. Concurrent writes may 
be seen in a different order on different machines. (Hutto 
and Ahamad, 1990) 

• The following pairs of operations are causally related:
• Two writes by the same process to the same location
• A read followed by a write of the same process (even if the write 

addresses a different location) 
• A read that returns the value of a write from any process 
• Two operations that are transitively related according to the above 

conditions 



Example: Causal Consistency

• Is this data store causally consistent?

P1: W(x): a
P2: W(x): b
P3: R(x): b R(x): a
P4: R(x): a R(x): b



Example: Causal Consistency

• Is this data store causally consistent?

P1: W(x): a
P2: R(x): a W(x): b
P3: R(x): b R(x): a
P4: R(x): a R(x): b



Exercise: Causal Consistency

• Is this data store causally consistent?

P1: W(x): a W(x): c
P2: R(x): a W(x): b
P3: R(x): a R(x): c R(x): b
P4: R(x): a R(x): b R(x): c



Eventual Consistency
• If no updates take place for a long time, all replicas will 

eventually have the same data stored (Vogels, 2009) 

• In the absence of write-write conflicts, updates will 
eventually propagate to all replicas

• Convenient model for applications where updates are 
made by a single authority (e.g., web with caching)



What semantics do you want
• want a consistency model that is easy to understand 

(otherwise it is hard to write correct programs that use the 
data store)

• need to be able to guarantee the consistency model



Primary-based protocols

• straightforward implementation of sequential consistency
• primary server orders writes

• performance vs. fault tolerance tradeoff 
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Replicated-write protocols
• General idea: require clients to request and acquire the 

permission of multiple servers before either reading or 
writing a replicated data item 

• To write a replicated item: 
• client must first contact a majority of servers and get them to agree 

to the update
• once majority of servers have agreed, file is changed and a new 

version number is associated with 
• To read a replicated file: 

• client must obtain same version of file from a majority of servers



Failure Models
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Fault Tolerance
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Fault Tolerance
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How is all of this assignment managed?



Paxos
• Assumptions: 

• communication is 
unreliable. messages may 
be lost, duplicated, or 
reordered

• messages that are 
corrupted can be detected

• all operations are 
deterministic

• processes might exhibit 
crash failures but not 
arbitrary failures

• no collusion between 
processes



Byzantine Fault Tolerance



Byzantine Fault Tolerance
• want consistent state 
(consensus) even in 
the presence of 
arbitrary (possibly 
malicious) failures

• need to make 
assumptions on how 
many failures can 
occur


