
CS 105 December 5, 2019

Lecture 23: Reliable Storage



File System Goals
• Persistence: maintain/update user data + internal data 

structures on persistent storage devices

• Flexibility: need to support diverse file types and 
workloads

• Performance: despite limitations of disks

• Reliability: must store data for long periods of time 
despite OS crashes or hardware malfunctions 



Types of Failures
• Isolated Disk Sectors

• Transient: data corrupted but new data can be successfully written 
to / read from sector 

• Permanent: physical malfunction (magnetic coating, scratches, 
contaminants)

• Full Disk Failure
• Damage to disk head, electronic failure, wear out



Data Corruption
• data corruption can be caused by write interference, head 

height, leaked charge, cosmic rays, etc.
• approximately one sector will be corrupted per 10^14 bits 

read (about a 2% chance if you read a 2TB disk)



Checksums
• a checksum is the result of a function that takes a chunk 

of data (e.g., a 4KB block) and returns a short summary 
(e.g., 4 or 8 bytes)

• File systems can store checksums for metadata and/or file 
contents

• Example: 
• xor
• addition
• Fletcher check-sum
• cyclic redundancy check (CRC)



XOR-based Checksum
• Consider a 16-byte data block

• Represented in binary, we get

• We then perform an XOR over each column to compute 
the checksum

365e c4cd ba14 8a92 ecef 2c3a 40be f666

00110110 01011110 11000100 11001101

10111010 00010100 10001010 10010010

11101100 11101111 00101100 00111010

01000000 10111110 11110110 01100110

00100000 00011011 10010100 00000011 = 0x201b9403



Using Checksums
• datablocks are stored with checksums 

• When reading a datablock 𝐷 from disk, the OS also reads 
its stored checksum 𝐶#(𝐷). It then computes the 
checksum of the datablock 𝐶& 𝐷 and check whether 
𝐶& 𝐷 == 𝐶#(𝐷). 



Latent-Sector Errors
• latent-sector errors arise when a disk sector (or group of 

sectors) has been damaged in some way
• Example: head crash



Error Correcting Codes
• an error-correcting code is a redundant encoding of data 

that allows information to be recovered from a corrupted 
copy

• used by disks to automatically correct for disk errors

• balances storage overhead versus error rate



Read-Solomon Coding
• Consider a 16-byte data block d

• It is mapped to a polynomial 𝑝) 𝑥 = 𝑑, + 𝑑.𝑥 + …+ 𝑑.0𝑥.0
evaluated modulo 22

• The error-correction code is simply 𝑝) evaluated at 𝑛
different points

365e c4cd ba14 8a92 ecef 2c3a 40be f666



Full Disk Error
• Damage to disk head, electronic failure, wear out



RAID
• a redundant array of inexpensive disks (RAID) is a system 

that spreads data redundantly across multiple disks in 
order to tolerate individual disk failures



RAID-1: Mirroring
• Each block is stored on 2 separate disks.
• Read either copy

• If error is detected, read other copy
• write both copies (in parallel) 



RAID-4: Parity for Errors
• block-level striping with a dedicated parity disk
• RAID-2 and RAID-3 are variants that stripe at the bit and 

byte levels (not used in practice)
• parity disk becomes the bottleneck



RAID-5: Rotating Parity
• write-load for parity block spread across all disks



Scrubbing
• most data is rarely accessed
• many systems utilize disk scrubbing, that is , periodically 

reading through every block of the system and checking 
whether checksums are still valid



Tolerating Crash Failures
• If a processor crashes then only some blocks on a disk 

might get updated.
• Data is lost
• On-disk data structures might become inconsistent. 
• E.g.

• starting state: A, B 
• update: A -> A’ and B -> B’
• Possible result when there is a crash: A, B’ or A’, B 

• Solutions:
• Add fsync: programmer forces writes to disk 
• Detect and recover
• Fault-tolerant disk update protocols 



File System Consistency Checks
• fsck (UNIX) & scandisk (Windows) 

• observation: writing a new data block involves 3 writes 
(write data block, update freelist, update inode)

Detection Algorithm for File Blocks:
• Build table with info about each block 

• initially each block is unknown (except superblock) 
• Scan through the inodes and the freelist

• Keep track in the table
• If block already in table, note error 

• Finally, see if all blocks have been visited 



Fault-tolerant Disk Update
• Use Journaling (aka) Write-Ahead Logging 

• Idea: Protocol where performing a single disk write 
causes multiple disk writes to take effect. 

• Implementation: New on-disk data structure (“journal”) 
with a sequence of blocks containing updates plus …



Journal-Update Protocol Step 
• write x; write y; write z 
• E.g., write to inode, write to freelist (bitmap), write to datablock

• implemented by:
• Append to journal: TxBegin, x, y, z
• Wait for completion of disk writes.
• Append to journal: TxEnd
• Wait for completion of disk write.
• Write x, y, z to final locations in file system 

• Recovery protocol for TxBegin ... TxEnd:
• if TxEnd present then redo writes to final locations
• else ignore journal entries following TxBegin


