Lecture 23: Reliable Storage

CS 105 December 5, 2019

File System Goals

- Persistence: maintain/update user data + internal data
structures on persistent storage devices

- Flexibility: need to support diverse file types and
workloads

- Performance: despite limitations of disks

- Reliability: must store data for long periods of time
despite OS crashes or hardware malfunctions

Types of Failures

- Isolated Disk Sectors

- Transient: data corrupted but new data can be successfully written
to / read from sector

- Permanent: physical malfunction (magnetic coating, scratches,
contaminants)

 Full Disk Failure

- Damage to disk head, electronic failure, wear out

Data Corruption

- data corruption can be caused by write interference, head
height, leaked charge, cosmic rays, etc.

- approximately one sector will be corrupted per 1014 bits
read (about a 2% chance if you read a 2TB disk)

Fracion of tola | disks with at lkeast 1 CM

0.04

0.035 | U-
0.03 | E-
0.025 |
0.02
0015
0.01

0.005 |

mmooO»

I_N_r:‘,_‘__

p———

Disk age (months)

Checksums

- a checksum is the result of a function that takes a chunk
of data (e.g., a 4KB block) and returns a short summary
(e.g., 4 or 8 bytes)

- File systems can store checksums for metadata and/or file
contents

- Example:
- XOr
- addition
- Fletcher check-sum
- cyclic redundancy check (CRC)

XOR-based Checksum

- Consider a 16-byte data block

365e | c4cd | bald | 8a92 | ecef | 2c3a | 40be | £666

- Represented in binary, we get

00110110 01011110|11000100 11001101
10111010 | 00010100 | 10001010 | 10010010
11101100 11101111 00101100 00111010
01000000 10111110 11110110 01100110

- We then perform an XOR over each column to compute

the checksum
00100000 00011011 1710010100 71000000112 = 0x201b9403

Using Checksums

- datablocks are stored with checksums

- When reading a datablock D from disk, the OS also reads
its stored checksum Cs(D). It then computes the
checksum of the datablock C-(D) and check whether
Cc(D) == Cs(D).

Latent-Sector Errors

- latent-sector errors arise when a disk sector (or group of
sectors) has been damaged in some way

- Example: head crash

Fraction of total disks with at least 1 error

0.22
0.2
0.18

0.16
0.14
0.12
01
0.08 r
0.06
0.04
0.02

C-1
- E-1
E-2

X
x*

T

- Pk

-t

°1
\
4

12
Disk age (months)

18

24

Error Correcting Codes

- an error-correcting code is a redundant encoding of data
that allows information to be recovered from a corrupted

copy

- used by disks to automatically correct for disk errors

- balances storage overhead versus error rate

Read-Solomon Coding

- Consider a 16-byte data block d

365e | c4cd | bald | 8a92 | ecef | 2c3a | 40be | £666

- It is mapped to a polynomial p;(x) = dy + dyx + ...+ dsx1®
evaluated modulo 28

- The error-correction code is simply p,; evaluated at n
different points

Full Disk Error

- Damage to disk head, electronic failure, wear out

16 %
14 %
12 %

10 %

3TB

HITACHI Seagate @ ‘6‘53%‘::‘ n

RAID

- a redundant array of inexpensive disks (RAID) is a system
that spreads data redundantly across multiple disks in
order to tolerate individual disk failures

RAID-1:

- Each block is stored on 2 separate disks.

- Read either copy

- If error is detected, read other copy
- write both copies (in parallel)

(Disk 0 Disk 1>
data O data O
data 1 data 1
data 2 data 2
data 3 data 3
data 4 data 4
data 5 data 5
data 6 data 6

Mirroring

N
A

block 0
block 3
block 6
block 9
block 12
block 15
block 18
block 21

e

Y
@l

block 1
block 4
block 7
block 10
block 13
block 16
block 19
block 22

RAID-4: Parity for Errors

- block-level striping with a dedicated parity disk

- RAID-2 and RAID-3 are variants that stripe at the bit and
byte levels (not used in practice)

- parity disk becomes the bottleneck

i

block 2
block 5
block 8
block 11
block 14
block 17
block 20
block 23

T —

g

N
@

P(0,1,2)

P(3,4,5)

P(6,7,8)
P(9,10,11)
P(12,13,14)
P(15,16,17)
P(18,19,20)
P(21,22,23)

S —

N
A

block 0

block 3

block 6

P(9,10,11)

block 12

block 15

block 18
P(21,22,23)

T

N
A

block 1
block 4
P(6,7,8)
block 9
block 13
block 16
P(18,19,20)
block 21

et

RAID-5: Rotating Parity

- write-load for parity block spread across all disks

A Y
"~

block 2
P(3,4,5)
block 7
block 10
block 14
P(15,16,17)
block 19
block 22

g

o
N

P(0,1,2)
block 5
block 8
block 11
P(12,13,14)
block 17
block 20
block 23

e

Scrubbing

- most data is rarely accessed

- many systems utilize disk scrubbing, that is , periodically
reading through every block of the system and checking
whether checksums are still valid

Tolerating Crash Failures

- If a processor crashes then only some blocks on a disk
might get updated.
- Data is lost
- On-disk data structures might become inconsistent.
- E.Q.
- starting state: A, B
- update: A->A'and B -> B’
- Possible result when there is a crash: A, B’ or A, B
- Solutions:
- Add fsync: programmer forces writes to disk
- Detect and recover
- Fault-tolerant disk update protocols

File System Consistency Checks

- fsck (UNIX) & scandisk (Windows)

- observation: writing a new data block involves 3 writes
(write data block, update freelist, update inode)

Detection Algorithm for File Blocks:

- Build table with info about each block
- initially each block is unknown (except superblock)

- Scan through the inodes and the freelist
- Keep track in the table
- If block already in table, note error

- Finally, see if all blocks have been visited

Fault-tolerant Disk Update

- Use Journaling (aka) Write-Ahead Logging

- ldea: Protocol where performing a single disk write
causes multiple disk writes to take effect.

- Implementation: New on-disk data structure (“journal”)
with a sequence of blocks containing updates plus ...

Journal-Update Protocol Step

- write x; write y; write z
- E.g., write to inode, write to freelist (bitmap), write to datablock

- implemented by:
- Append to journal: TxBegin, x, y, z
- Wait for completion of disk writes.
- Append to journal: TxEnd
- Wait for completion of disk write.
- Write x, y, z to final locations in file system

- Recovery protocol for TxBegin ... TxEnd:
- if TXEnd present then redo writes to final locations
- else ignore journal entries following TxBegin

