
CS 105 December 3, 2019

Lecture 22: File Systems (cont'd)

Review: File Systems 101
• Long-term information storage goals

• Persistence: maintain/update user data + internal data structures
on persistent storage devices

• Flexibility: need to support diverse file types and workloads
• Performance: despite limitations of disks
• Reliability: must store data for long periods of time despite OS

crashes or hardware malfunctions

• Solution: the File System Abstraction
• interface that provides operations involving
• files
• directories (a special kind of file)

Review: File System Layout
• File systems are stored on disks

• disks can be divided into one or more partitions
• Sector 0 of disk called Master Boot Record

• executable boot loader
• end of MBR: partition table (contains partitions' start & end addr.)

• Remainder of disk divided into partitions
• First block of each partition is boot block (loaded by MBR on boot)
• The rest of the partition stores the file system (organized as blocks)

FILE SYSTEM

Review: Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order

• simple, efficient read, but low utility (external fragmentation) and usability
• Linked structure: each block points to the next block

• still simple, better utilization, slower read (random access), ptr overhead
• Indexed structure: index block points to many other blocks

• Log structure: sequence of segments, each containing updates

Indexed Allocation: Fast File System (FFS)
• tree-based, multi-level index

• superblock identifies file system's key parameters
• inodes store metadata and pointers
• datablocks store data

FFS Superblock
• Identifies file system’s key parameters:

• type
• block size
• inode array location and size
• location of free list

FFS inodes
• inode blocks contain an array

of inodes
• each inode contains:

• Metadata
• 12 data pointers
• 3 indirect pointers

inode Metadata
• Type

• ordinary file
• directory
• symbolic link
• special device

• Size of the file (in #bytes)
• # links to the i-node
• Owner (user id and group id)
• Protection bits
• Times: creation, last accessed, last
modified

FFS Index Structures

FFS Index Structures

Key Characteristics of FFS
• Tree Structure

• efficiently find any block of a file
• High Degree (or fan out)

• minimizes number of seeks
• supports sequential reads & writes

• Fixed Structure
• implementation simplicity

• Asymmetric
• not all data blocks are at the same level
• supports large files
• small files don’t pay large overheads

FFS Directory Structure
• Originally: array of 16 byte entries

• 14 byte file name
• 2 byte i-node number

• Now: implicit list. Each entry contains:
• 4-byte inode number
• Full record length
• Length of filename
• Filename

• First entry is “.”, points to self
• Second entry is “..”, points to parent inode

Exercise: Reading Files with FFS
To read file /foo/bar/baz, Read & Open:
1. inode #2 (root always has inumber 2), find root’s blocknum (912)
2. root directory (in block 912), find foo’s inumber (31)
3. inode #31, find foo’s blocknum (194)
4. foo (in block 194), find bar’s inumber (73)
5. inode #73, find bar’s blocknum (991)
6. bar (in block 991), find baz’s inumber (40)
7. inode #40, find data blocks (302, 913, 301)
8. data blocks 302
9. data block 913
10. data block 301

Key Characteristics of FFS
• Tree Structure

• efficiently find any block of a file
• High Degree (or fan out)

• minimizes number of seeks
• supports sequential reads & writes

• Fixed Structure
• implementation simplicity

• Asymmetric
• not all data blocks are at the same level
• supports large files
• small files don’t pay large overheads

Exercise: File organization
• Imagine you are trying to organize your (large) collection of

photographs. You consider two possible ways to store your
files

1. Put all the files in a director called /photos/
• e.g., /photos/xyzstu.jpg, /photos/xeftuv.jpg, /photos/xywqre.jpg

2. Organize the photos into nested subdirectories organized by the first
three characters of the filename

• e.g., /photos/x/y/z/xyzstu.jpg, /photos/x/e/f/xeftuv.jpg, /photos/x/y/w/xywqre.jpg

• What are the tradeoffs between these two approaches, and
which one would you adopt?

Free List
To write files, need to keep track of which blocks are
currently free
How to maintain?
• linked list of free blocks

• inefficient (why?)
• linked list of metadata blocks that in turn point to free

blocks
• simple and efficient

• bitmap
• good because…

Problem 1: Poor Performance
• In a naïve implementation of FFS, performance starts bad

and gets worse
• One early implementation delivered only 2% disk

bandwidth
• The root of the problem: poor locality

• data blocks of a file were often far from its inode
• file system would end up highly fragmented: accessing a logically

continuous file would require going back and forth across the

Solution 1: Disk Awareness
Single track (e.g., dark gray)

C
yl

in
de

r:
tra

ck
s

at
 s

am
e

di
st

an
ce

 fr
om

 c
en

te
r

(e
.g

.,
al

l d
ar

k
gr

ay
 tr

ac
ks

)
C

ylinder group: set of n consecutive cylinders
(e.g., all gray cylinders, for n=3)

Abstracting Disk Awareness
• modern drives export a logical address space of blocks

that are (temporally) close
• modern versions of FFS (ext2, ext3, ext4) organize the

drive into block groups composed of consecutive portions
of the disk's logical address space

Locality in File System Accesses

Allocating Blocks
• FFS manages allocation per block group
• A per-group inode bitmap (ib) and data bitmap (db)

• Allocating directories:
• find a group with a low number of allocated directories & high number

of free inodes; put the directory data + inode there
• Allocating files:

• place a file in the same group as the directory that contains it; allocate
inode and data in same group

• uses first-fit heuristic
• reserves ~10% space to avoid deterioration of first-fit

ib db

Solution 2: Page Cache
• To reduce costs of accessing files, most operating

systems make aggressive use of caching
• page cache contains

• heap and stack pages for each process
• file data and metadata from devices (accessed with read() and

write() calls)
• memory-mapped files

What about writes?
• need to durably store data means writes often dominate

performance
• small writes are expensive

Writing on Magnetic Disks

• Seek: to get to the track (1-15ms)
• Rotational Latency: to get to the

sector (2-8ms)
• Transfer: get bits off the disk

(.005ms/512-byte sector)

Writing on Flash Disks (SSDs)
• can’t write 1 byte/word
(must write whole
blocks)

• limited # of erase cycles
per block (memory wear)
• 103-106 erases and the

cell wears out

• reads can “disturb”
nearby words and
overwrite them with
garbage

Solution 1: Copy-on-write (COW)
• key idea: never overwrite files or directories in place; write

new copy of updated version to previously unused
location on disk.

• also used to optimize copies from fork(), exec(), etc.

Solution 2: write buffering
• page cache tracks if each page is "dirty" (aka modified)
• dirty pages are periodically flushed to disk

+ amortizes write overhead
+ allows re-ordering of disk accesses
- can introduce inconsistency in the event of crash failures

