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Lecture 21: File Systems
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Storage Devices
• Magnetic Disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block-level random access
• Slow performance for random access
• Better performance for streaming access

• Solid State Disks (Flash Memory)
• Storage that rarely becomes corrupted
• Capacity at moderate cost ( 50x magnetic disk)
• Block-level random access
• Good performance for random reads
• Not-as-good performance for random writes
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5 MB

2019
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10 TB

2019
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250 GB



Comparing Storage Media



File Systems 101
• Long-term information storage goals
• should be able to store large amounts of information
• information must survive processes, power failures, etc.
• processes must be able to find information
• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction
• interface that provides operations involving
• files
• directories (a special kind of file)



The File Abstraction
• a file is a named collection of data
• name is defined on creation
• processes use name to subsequently access that file

• a file is comprised of two parts:
• data: information a user or application puts in a file
• an array of untyped bytes
• implemented as an array of fixed-size blocks

• metadata: information added and managed by the OS 
• e.g., size, owner, security info, modification time



File Names
• Each file has a unique low-level name
• distinct from location; processes don't care where on disk a file is 

stored

• file system provides mapping from low-level names to storage location

• Each file has one or more human-readable names
• file system provides mapping from human-readable names to low-level 

names

• Naming conventions
• up to 255 characters long

• case sensitive (UNIX) or not case sensitive (Windows)

• extensions not enforced (UNIX) or associated with meaning (Windows)



Directories
• a directory is a file that provides mappings from human-

readable names to low-level names (i.e., file numbers):
• a list of human-readable names
• a mapping from each  name to a specific underlying file or directory



Path Names
• Each path from root is a 

name for a leaf
• /foo/foo.txt
• /bar/baz/baz.txt

• Each UNIX directory 
contains 2 special entries
• "." = this directory
• ".." = parent directory

• Absolute paths: path of 
file from the root directory

• Relative paths: path from 
current working directory 
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Directories
• OS uses path name to find directories and files

• Directory maps file name to attributes                                    
and locations

File 158
"/home"

File 818
"/home/eleanor"

ada 682    
eleanor 818
rett 830

music   320
work     219
foo.txt 871

File 871
"/home/eleanor/foo.txt"



Basic File System Operations
• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file

How should we implement this?



File System Challenges
• Performance: despite limitations of disks

• Flexibility: need to support diverse file types and 
workloads

• Persistence: store data long term

• Reliability: resilient to OS crashes and hardware failures



File System Properties
• Most files are small
• need strong support for small files (optimize the common case)
• block size can't be too big

• Directories are typically small
• usually 20 or fewer entries

• Some files are very large
• must handle large files
• large file access should be reasonably efficient

• File systems are usually about half full



Implementation Basics
• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

• Locality heuristics:
• group directories
• make writes sequential
• defragment



File System Layout 
• File systems are stored on disks
• disks can be divided into one or more partitions

• Sector 0 of disk called Master Boot Record
• executable boot loader
• end of MBR: partition table (contains partitions' start & end addr.)

• Remainder of disk divided into partitions
• First block of each partition is boot block (loaded by MBR on boot)
• The rest of the partition stores the file system



Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates

Which is the best?
For sequential access?
For random access?
For small files?
For large files?



Continuous Allocation
All bytes together, in order
+ Simple: state required per file = start block & size
+ Efficient: entire file can be read with one seek
- Fragmentation: external is bigger problem
- Usability: user needs to know size of file at time of 

creation 



Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates



Linked Allocation
Each file is stored as linked list of blocks: First word of each 
block points to next block, rest of disk block is file data 
+ Space Utilization: no space lost to external 

fragmentation 
+ Simple: only need to store 1st block of each file
- Performance: random access is slow
- Space Utilization: overhead of pointers 



File Allocation Table (FAT) File System
• Developed by Microsoft for MS-DOS
• Still widely used for flash drives, camera cards, etc.
• Fat-32 supports 2"# blocks and files of 2$" − 1 bytes 
• File table: 
• Linear map of all blocks on disk 
• Each file a linked list of blocks 



FAT File System
• 1 entry per block
• EOF for last block
• 0 indicates free block 
• low-level name = FAT
index of first block in 
file



FAT Directory Structure
Folder: a file with 32-byte entries
Each Entry: 
• 8 byte name + 3 byte extension (ASCII) 
• creation date and time
• last modification date and time
• first block in the file (index into FAT) 
• size of the file



Exercise
• How many disk reads would be required to read (all of) a 

2^15 byte file named /foo/bar/baz.txt
• assume 4096 byte blocks
• assume that all directories are small enough to fit in one block



Multiple human-readable names
• Many file systems allow a given file to have multiple

names

• Hard links are multiple file directory entries that map 
different path names to the same file number

• Symbolic Links or soft links are directory entries that map 
one name to another (effectively a redirect)

• Exercise: how could we implement symbolic links in the 
FAT file system?



Evaluating Fat
How is FAT good?
• Simple: state required per file: start block only 
• Widely supported
• No external fragmentation
• block used only for data 

How is FAT bad?
• Poor locality 
• Many file seeks (unless entire FAT in memory)
• Poor random access 
• Limited metadata 
• Limited access control 
• Limitations on volume and file size 
• No support for reliability techniques 



Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates


