
CS 105 November 21, 2019

Lecture 21: File Systems

Memory Hierarchy

2

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Storage Devices
• Magnetic Disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block-level random access
• Slow performance for random access
• Better performance for streaming access

• Solid State Disks (Flash Memory)
• Storage that rarely becomes corrupted
• Capacity at moderate cost (50x magnetic disk)
• Block-level random access
• Good performance for random reads
• Not-as-good performance for random writes

1950s
IBM 350
5 MB

2019
WD Red
10 TB

2019
Samsung 840
250 GB

Comparing Storage Media

File Systems 101
• Long-term information storage goals
• should be able to store large amounts of information
• information must survive processes, power failures, etc.
• processes must be able to find information
• needs to support concurrent accesses by multiple processes

• Solution: the File System Abstraction
• interface that provides operations involving
• files
• directories (a special kind of file)

The File Abstraction
• a file is a named collection of data
• name is defined on creation
• processes use name to subsequently access that file

• a file is comprised of two parts:
• data: information a user or application puts in a file
• an array of untyped bytes
• implemented as an array of fixed-size blocks

• metadata: information added and managed by the OS
• e.g., size, owner, security info, modification time

File Names
• Each file has a unique low-level name
• distinct from location; processes don't care where on disk a file is

stored

• file system provides mapping from low-level names to storage location

• Each file has one or more human-readable names
• file system provides mapping from human-readable names to low-level

names

• Naming conventions
• up to 255 characters long

• case sensitive (UNIX) or not case sensitive (Windows)

• extensions not enforced (UNIX) or associated with meaning (Windows)

Directories
• a directory is a file that provides mappings from human-

readable names to low-level names (i.e., file numbers):
• a list of human-readable names
• a mapping from each name to a specific underlying file or directory

Path Names
• Each path from root is a

name for a leaf
• /foo/foo.txt
• /bar/baz/baz.txt

• Each UNIX directory
contains 2 special entries
• "." = this directory
• ".." = parent directory

• Absolute paths: path of
file from the root directory

• Relative paths: path from
current working directory

/

foo bar

bar
.txt bazfoo

.txt

baz
.txt

Directories
• OS uses path name to find directories and files

• Directory maps file name to attributes
and locations

File 158
"/home"

File 818
"/home/eleanor"

ada 682
eleanor 818
rett 830

music 320
work 219
foo.txt 871

File 871
"/home/eleanor/foo.txt"

Basic File System Operations
• Create a file
• Write to a file
• Read from a file
• Seek to somewhere in a file
• Delete a file

How should we implement this?

File System Challenges
• Performance: despite limitations of disks

• Flexibility: need to support diverse file types and
workloads

• Persistence: store data long term

• Reliability: resilient to OS crashes and hardware failures

File System Properties
• Most files are small
• need strong support for small files (optimize the common case)
• block size can't be too big

• Directories are typically small
• usually 20 or fewer entries

• Some files are very large
• must handle large files
• large file access should be reasonably efficient

• File systems are usually about half full

Implementation Basics
• Directories: file name -> low-level names (i.e., file numbers)

• Index structures: file number -> block

• Free space maps: find a free block (ideally nearby)

• Locality heuristics:
• group directories
• make writes sequential
• defragment

File System Layout
• File systems are stored on disks
• disks can be divided into one or more partitions

• Sector 0 of disk called Master Boot Record
• executable boot loader
• end of MBR: partition table (contains partitions' start & end addr.)

• Remainder of disk divided into partitions
• First block of each partition is boot block (loaded by MBR on boot)
• The rest of the partition stores the file system

Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates

Which is the best?
For sequential access?
For random access?
For small files?
For large files?

Continuous Allocation
All bytes together, in order
+ Simple: state required per file = start block & size
+ Efficient: entire file can be read with one seek
- Fragmentation: external is bigger problem
- Usability: user needs to know size of file at time of

creation

Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates

Linked Allocation
Each file is stored as linked list of blocks: First word of each
block points to next block, rest of disk block is file data
+ Space Utilization: no space lost to external

fragmentation
+ Simple: only need to store 1st block of each file
- Performance: random access is slow
- Space Utilization: overhead of pointers

File Allocation Table (FAT) File System
• Developed by Microsoft for MS-DOS
• Still widely used for flash drives, camera cards, etc.
• Fat-32 supports 2"# blocks and files of 2$" − 1 bytes
• File table:
• Linear map of all blocks on disk
• Each file a linked list of blocks

FAT File System
• 1 entry per block
• EOF for last block
• 0 indicates free block
• low-level name = FAT
index of first block in
file

FAT Directory Structure
Folder: a file with 32-byte entries
Each Entry:
• 8 byte name + 3 byte extension (ASCII)
• creation date and time
• last modification date and time
• first block in the file (index into FAT)
• size of the file

Exercise
• How many disk reads would be required to read (all of) a

2^15 byte file named /foo/bar/baz.txt
• assume 4096 byte blocks
• assume that all directories are small enough to fit in one block

Multiple human-readable names
• Many file systems allow a given file to have multiple

names

• Hard links are multiple file directory entries that map
different path names to the same file number

• Symbolic Links or soft links are directory entries that map
one name to another (effectively a redirect)

• Exercise: how could we implement symbolic links in the
FAT file system?

Evaluating Fat
How is FAT good?
• Simple: state required per file: start block only
• Widely supported
• No external fragmentation
• block used only for data

How is FAT bad?
• Poor locality
• Many file seeks (unless entire FAT in memory)
• Poor random access
• Limited metadata
• Limited access control
• Limitations on volume and file size
• No support for reliability techniques

Storing Files
Possible ways to allocate files:
• Continuous allocation: all bytes together, in order
• Linked structure: each block points to the next block
• Indexed structure: index block points to many other blocks
• Log structure: sequence of segments, each containing updates

