
CS 105 November 14, 2019

Lecture 19: TCP

OSI Network Model

Transport Layer Protocols
User Datagram Protocol (UDP)

• unreliable, unordered
delivery

• connectionless

• best-effort, segments might
be lost, delivered out-of-
order, duplicated

• reliability (if required) is the
responsibility of the app

Transmission Control Protocol (TCP)

• reliable, inorder delivery

• connection setup

• flow control

• congestion control

UDP: tradeoffs
• fast:

• no connection setup
• no rate-limiting

• simple:
• no connection state
• small header

• (possibly) extra work
for applications
• reordering
• duplicate suppression
• handle missing packets

Transport Protocols by Application
Application Application-Level

Protocol
Transport Protocol

Name Translation DNS Typically UDP
Routing Protocol RIP Typically UDP
Network Management SNMP Typically UDP
Remote File Server NFS Typically UDP
Streaming multimedia (proprietary) UDP or TCP
Internet telephony (proprietary) UDP or TCP
Remote terminal access Telnet TCP
File Transfer (S)FTP TCP
Email SMTP TCP
Web HTTP(S) TCP

Transport-Layer Segment Formats
UDP TCP

application message (payload)

Source Port # Dest. Port #

sequence number

acknowledgement number

receive windowHL FSRPAU

checksum U data pointer

options

application message (payload)

Source Port # Dest. Port #

TCP Connections
• TCP is connection-
oriented

• A connection is initiated
with a three-way
handshake
• Recall: server will typically

create a new socket to
handle the new connection

• FIN works (mostly) like
SYN but to teardown a
connection

SYN
SYN, ACK

ACK
…

FIN
ACK

Reliable Transport
• Each SYN segment will include

a randomly chosen sequence
number

• Sequence number of each
segment is incremented by data
length

• Receiver sends ACK segments
acknowledging latest sequence
number received

• Sender maintains copy of all
sent but unacknowledged
segments; resends if ACK does
not arrive within timeout

• Timeout is dynamically adjusted
to account for round-trip delay

SYN
SYN, ACK

ACK

FIN
ACK

data (Seq = 47)
ACK 47

data (Seq = 48)

ACK 49
data (Seq = 49)

data (Seq = 50)

ACK 49
data (Seq = 50)

Send Timeout

Pipelined Protocols
• Pipelining allows sender to send multiple "in-flight", yet-to-

be-acknowledged packets
• increases throughput
• needs buffering at sender and receiver

• how big should the window be?

Th
e
im
ag
e
pa
rt
wi
th
rel
ati
on
sh
ip
ID
rId
2
w
as
no
t
fo
un
d
in
th
e
fil
e.

The
ima
ge
part
with
relat
ions
hip
ID
rId2
was
not
foun
d in
the
file.

what if a packet in the middle goes missing?

Example: Window Size = 4
• sender can have up to
4 unacknowledged
messages

• when ACK for first
message is received, it
can send another
message

ACK 47

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 48

ACK 49

ACK 50 data (Seq = 51)
data (Seq = 52)
data (Seq = 53)
data (Seq = 54)

TCP Fast Retransmit
• Receiver always acks
the last id it
successfully received

• Sender detects loss
without waiting for
timeout, resends
missing packet

ACK 47

data (Seq = 47)
data (Seq = 48)
data (Seq = 49)
data (Seq = 50)

ACK 47

ACK 50 data (Seq = 51)data (Seq = 48)
data (Seq = 48)

ACK 47

ACK 51

ACK 51

TCP Congestion Control
• TCP operates under a principle of additive increase-

multiplicative decrease
• window size++ every RTT if no packets lost
• window size/2 if a packet is dropped

TCP Fairness
• Goal: if k TCP sessions share same bottleneck link of

bandwidth R, each should have average rate of R/k

R

RConnection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Loss: decreases throughput
proportional to current bandwidth

Congestion avoidance: increases
throughput linearly (evenly)

TCP Slow Start
• Problem: linear increase takes a long time to build up a

decent window size, and most transactions are small

• Solution: allow window size to increase exponentially until
first loss

TCP Summary
• Reliable, in-order message delivery

• Connection-oriented, three-way handshake

• Transmission window for better throughput
• timeouts based on link parameters (e.g., RTT, variance)

• Congestion control
• Linear increase, exponential backoff

• Fast adaptation
• Exponential increase in the initial phase

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client

1. Start server

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Host and Service Conversion: getaddrinfo
• getaddrinfo is the modern way to convert string

representations of hostnames, host addresses, ports, and
service names to socket address structures.
• Replaces obsolete gethostbyname and getservbyname funcs.

• Advantages:
• Reentrant (can be safely used by threaded programs).
• Allows us to write portable protocol-independent code

• Works with both IPv4 and IPv6

• Disadvantages
• Somewhat complex
• Fortunately, a small number of usage patterns suffice in most

cases.

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: socket
• Clients and servers use the socket function to create a

socket descriptor:

• Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: bind
• A server uses bind to ask the kernel to associate the

server’s socket address with a socket descriptor:

• The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

• Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: listen
• By default, kernel assumes that descriptor from socket

function is an active socket that will be on the client end of
a connection.

• A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

• Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

• backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: accept
• Servers wait for connection requests from clients by

calling accept:

• Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address in
addr and size of the socket address in addrlen.

• Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Client /
Server
Session

Sockets Interface

socket

socket

bind

listen

read

writeread

write

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfo

getaddrinfo

Sockets Interface: connect
• A client establishes a connection with a server by calling

connect:

• Attempts to establish a connection with server at socket
address addr
• If successful, then clientfd is now ready for reading and writing.
• Resulting connection is characterized by socket pair

(x:y, addr.sin_addr:addr.sin_port)
• x is client address
• y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from accept.
Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Connected vs. Listening Descriptors
• Listening descriptor

• End point for client connection requests
• Created once and exists for lifetime of the server

• Connected descriptor
• End point of the connection between client and server
• A new descriptor is created each time the server accepts a

connection request from a client
• Exists only as long as it takes to service client

• Why the distinction?
• Allows for concurrent servers that can communicate over many

client connections simultaneously
• E.g., Each time we receive a new request, we fork a child to handle the

request

Exercise: Concurrent Connections
int main(int argc, char **argv){

int listenfd, connfd;
socklen_t clientlen;
struct sockaddr_storage clientaddr;
char client_hostname[MAXLINE], client_port[MAXLINE];

listenfd = Open_listenfd(argv[1]);
while (1) {

clientlen = sizeof(struct sockaddr_storage);
connfd = Accept(listenfd, clientaddr, &clientlen);
Getnameinfo(&clientaddr, clientlen, client_hostname, MAXLINE,

client_port, MAXLINE, 0);
printf("Connected to (%s, %s)\n", client_hostname, client_port);

echo(connfd);
Close(connfd);

}
return 0;

}

