
CS 105 November 5, 2019

Lecture 17: Semaphores and Conditional Variables

Semaphores
• A semaphore s is a stateful synchronization primitive

comprised of:
• a value n (non-negative integer)
• a lock
• a queue

• Interface:
• init(sem_t *s, int process_shared, unsigned int val)
• P(sem_t * s): If s is nonzero, the P decrements s and returns

immediately. If s is zero, then adds the thread to queue(s); after
restarting, the P operation decrements s and returns.

• V(sem_t * s): Increments s by 1. If there are any threads in
queue(s), then V restarts exactly one of these threads, which then
completes the P operation.

Semantics of P and V
• P(sem_t * s)

• block (suspend thread) until value n > 0
• when n > 0, decrement n by one

• V(sem_t * s)
• increment value n b 1
• resume a thread waiting on s (if any)

P(sem_t * s){
while(s->n == 0){
;

}
s->n -= 1

}

V(sem_t * s){
s->n += 1

}

Why P and V?
• Edsger Dijkstra was from the Netherlands

• P comes from the Dutch word proberen (to test)
• V comes from the Dutch word verhogen (to increment)

• Better names than the alternatives
• decrement_or_if_value_is_zero_block_then_decrement_after_waking
• increment_and_wake_a_waiting_process_if_any

Binary Semaphore (aka mutex)
• A binary semaphore is a semaphore initialized with value 1.

• the value is always 0 or 1
• Used for mutual exclusion---it's a more efficient lock!

sem_t s
init(&s, 1)

P(&s)
CriticalSection()
V(&s)

P(&s)
CriticalSection()
V(&s)

Unsafe region

Critical section wrt cnt

Critical
section
wrt
cnt

Example: Shared counter

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe
trajectory

Safe trajectory

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++){

cnt++;

}

return NULL;
}

volatile long cnt = 0;

Example: Shared counter

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++){
P(&s)
cnt++;
V(&s)

}

return NULL;
}

volatile long cnt = 0;
sem_t s;

sem_init(&s, 1);

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Forbidden region

1

0
-1 -1 -1 -1

1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

void *thread(void *args){
parallel_computation(args);

use_results();
}

volatile int results = 0;

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

void *thread(void *args){
parallel_computation(args);

P(&count_mutex);
done_count++;
V(&count_mutex);

if(done_count == n){
V(&barrier);

}
P(&barrier);
V(&barrier);
use_results();

}

volatile int results = 0;
volatile int done_count = 0;
sem_t count_mutex;
sem_init(&count_mutex, FALSE, 1)
sem_t barrier;
sem_init(&barrier, FALSE, 0)

Counting Semaphores
• A semaphore that is initialize with a value greater than 1 is

called a counting semaphore,
• Provide a more flexible primitive for mediating access to

shared resources

Example: Bounded Buffers

finite capacity (e.g. 20 loaves)
implemented as a queue

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Example: Bounded Buffers

Threads A: produce loaves of bread and put
them in the queue

Threads B: consume loaves by taking them off
the queue

Separation of concerns:
1. How do you implement a queue in an array?
2. How do you implement a bounded buffer, which
allows producers to add to it and consumers to take
things from it, all in parallel?

finite capacity (e.g. 20 loaves)
implemented as a queue

typedef struct {
int *b; // ptr to buffer containing the queue
int n; // length of array (max # slots)
int front; // index of first element, 0 <= front < n
int rear; // index of last elem, 0 <= rear < n, front==rear if empty

} bbuf_t

front

Example: Bounded Buffers
0 1 2 3 4 5 (n = 6)

2 4 13 Values wrap around!!b

rear

void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){
ptr->rear= ((ptr->rear)+1)%(ptr->n);
ptr->b[ptr->rear]= val;

}

int get(bbuf_t * ptr){
int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
return val;

}

typedef struct {

int *b; // ptr to buffer containing the queue

int n; // length of array (max # slots)

int front; // index of first element, 0 <= front < n

int rear; // (index of last elem)+1 % n, 0 <= rear < n

} bbuf_t

front

Example: Bounded Buffers
0 1 2 3 4 5 (n = 6)

2 4 13 Values wrap around!!b

rear

void init(bbuf_t * ptr, int n){

ptr->b = malloc(n*sizeof(int));

ptr->n = n;

ptr->front = 0;

ptr->rear = 0;

}

void put(bbuf_t * ptr, int val){

ptr->b[ptr->rear]= val;

ptr->rear= ((ptr->rear)+1)%(ptr->n);

}

int get(bbuf_t * ptr){

int val= ptr->b[ptr->front];

ptr->front= ((ptr->front)+1)%(ptr->n);

return val;

}

typedef struct {
int *b;
int n;
int front;
int rear;
sem_t mutex;
sem_t slots;
sem_t items;

} bbuf_t

front

Example: Bounded Buffers
0 1 2 3 4 5 (n = 6)

2 4 13b

rear
void init(bbuf_t * ptr, int n){
ptr->b = malloc(n*sizeof(int));
ptr->n = n;
ptr->front = 0;
ptr->rear = 0;
sem_init(&mutex, FALSE, 1)
sem_init(&slots, FALSE, n)
sem_init(&items, FALSE, 0)

}
void put(bbuf_t * ptr, int val){
P(&(ptr->slots))
P(&(ptr->mutex))
ptr->b[ptr->rear]= val;
ptr->rear= ((ptr->rear)+1)%(ptr->n);
V(&(ptr->mutex))
V(&(ptr->items))

}

int get(bbuf_t * ptr){
P(&(ptr->items))
P(&(ptr->mutex))
int val= ptr->b[ptr->front];
ptr->front= ((ptr->front)+1)%(ptr->n);
V(&(ptr->mutex))
V(&(ptr->slots))
return val;

}

Exercise: Readers/Writers
• Consider a collection of concurrent threads that have

access to a shared object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at the same
time

• a writer must have exclusive access to the object

int reader(void *shared){
int x = read(shared);
return x

}

void writer(void *shared, int val){
write(shared, val);

}

Limitations of Semaphores
• semaphores are a very spartan mechanism

• they are simple, and have few features
• more designed for proofs than synchronization

• they lack many practical synchronization features
• it is easy to deadlock with semaphores
• one cannot check the lock without blocking

• strange interactions with OS scheduling (priority
inheritance)

Condition Variables
• A condition variable cv is a stateless synchronization

primitive that is used in combination with locks (mutexes)
a value (non-negative integer)
• condition variables allow threads to efficiently wait for a change to

the shared state protected by the lock
• a condition variable is comprised of a waitlist

• Interface:
• wait(CV * cv, Lock * lock): Atomically releases the lock, suspends

execution of the calling thread, and places that thread on cv's
waitlist; after the thread is awoken, it re-acquires the lock before
wait returns

• signal(CV * cv): takes one thread off of cv's waitlist and marks it as
eligible to run. (No-op if waitlist is empty.)

• broadcast(CV * cv): takes all threads off cv's waitlist and marks
them as eligible to run. (No-op if waitlist is empty.)

Using a Condition Variable

1. Add a lock. Each shared value needs a lock to enforce

mutually exclusive access to the shared value.

2. Add code to acquire and release the lock. All code

access the shared value must hold the objects lock.

3. Identify and add condition variables. A good rule of

thumb is to add a condition variable for each situation in

which a function must wait.

4. Add loops to wait. Threads might not be scheduled

immediately after they are eligible to run. Even if a

condition was true when signal/broadcast was called, it

might not be true when a thread resumes execution.

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

/* Thread routine */
void *thread(void *args)
{

parallel_computation(args)

use_results()

}

volatile int results = 0;

Example: Synchronization Barrier
• With data parallel programming,

a computation proceeds in
parallel, with each thread
operating on a different section
of the data. Once all threads
have completed, they can
safely use each others results.
• MapReduce is an example of

this!

• To do this safely, we need a
way to check whether all n
threads have completed.

/* Thread routine */
void *thread(void *args)
{

parallel_computation(args);
acquire(&lock);
done_count++;
if(done_count < n){

wait(&all_there, &lock);
} else {

broadcast(&all_there);
}
release(&lock);
use_results();

}

volatile int results = 0;
pthread_mutex_t lock;
pthread_cond_t all_there;

Exercise: Readers/Writers
• Consider a collection of concurrent threads that have

access to a shared object
• Some threads are readers, some threads are writers

• a unlimited number of readers can access the object at the same
time

• a writer must have exclusive access to the object

int reader(void *shared){
int x = read(shared);
return x

}

void writer(void *shared, int val){
write(shared, val);

}

Condition Variables in C
• Pthreads: Standard interface for ~60 functions that manipulate

threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()
• exit() [terminates all threads] , RET [terminates current thread]

• Synchronizing access to shared variables
• pthread_mutex_init
• pthread_mutex_[un]lock
• pthread_cond_wait
• pthread_cond_signal
• pthread_cond_broadcast

23

Condition Variables in C

24

// inside enqueue function
pthread_mutex_lock(&lock);
while (“no space”)

pthread_cond_wait(&has_space, &lock);

critical section: … do useful work …

pthread_mutex_unlock(&lock);
pthread_cond_signal(&has_value);

// global declarations
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t has_value = PTHREAD_COND_INITIALIZER;
pthread_cond_t has_space = PTHREAD_COND_INITIALIZER;

