
CS 105 April 8, 2019

Lecture 20: Synchronization

Last week: Processes and Threads
• A process is an instance of a running program.

• logical control flow + isolated address space
• A thread is a sequential stream of execution

• logical control flow + better performance

⇒ Concurrent Programs

Why Concurrent Programs?

1.06

0.540.28 0.29 0.3

0
0.2
0.4
0.6
0.8

1
1.2

1 2 4 8 16

El
ap

se
d

tim
e

(s
)

Threads

Program Structure: expressing logically
concurrent programs

Responsiveness: shifting work to run
in the background

Performance: exploiting multiprocessors Performance: managing I/O devices

4

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

badcnt.c

Why not Concurrent Programs?

Race condition!

Race conditions
• A race condition is a timing-dependent error involving

shared state
• whether the error occurs depends on thread schedule

• program execution/schedule can be non-deterministic
• compilers and processors can re-order instructions

A concrete example…
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

• Liveness: if you are out of milk, someone buys milk
• Safety: you never have more than one quart of milk

Algorithm 1:

Look in fridge.
If out of milk:

go to store,
buy milk,
go home
put milk in fridge

A problematic schedule
You

3:00 Look in fridge; out of milk
3:05 Leave for store
3:10 Arrive at store
3:15 Buy milk
3:20 Arrive home; put milk in
fridge

Your Roommate

3:10 Look in fridge; out of milk
3:15 Leave for store
3:20 Arrive at store
3:25 Buy milk
3:30 Arrive home; put milk in
fridge

Safety violation:
You have too much milk and it spoils

Solution 1: Leave a note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 2:

if (milk == 0) { // no milk
if (note == 0) { // no note
note = 1; // leave note
milk++; // buy milk
note = 0; // remove note

}
}

Safety violation: you've introduced a Heisenbug!

Solution 2: Leave note before check note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 3:

note1 = 1
if (note2 == 0) { // no note from

roommate
if (milk == 0) { // no milk
milk++; // buy milk

}
}
note1 = 0

Liveness violation: No one buys milk

Solution 3: Keep checking for note
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 4:

note1 = 1
while (note2 == 1) {// wait until
; // no note

}
if (milk == 0) { // no milk
milk++; // buy milk

}
note1 = 0

Liveness violation: you've introduced deadlock!

Solution 4: Take turns
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 5:

note1 = 1
turn = 2
while (note2 == 1 and turn == 2){
;

}
if (milk == 0) { // no milk
milk++; // buy milk

}
note1 = 0

(probably) correct, but complicated and inefficient

Rewind…
• What problem are we actually trying to solve?

• We want to limit the possible schedules so that checking
for milk and buying milk act as a single atomic operation

Algorithm 1:

if (milk == 0) { // no milk
milk++; // buy milk

}

Locks
• A lock (aka a mutex) is a synchronization that provides

mutual exclusion. When one thread holds a lock, no other
thread can hold it.
• a lock can be in one of two states: locked or unlocked
• a lock is initially unlocked

• function acquire() waits until the lock is unlocked, then atomically
sets it to locked

• function release() sets the lock to unlocked

Atomic Operations
• Solution: hardware primitives to support synchronization
• A machine instruction that (atomically!) reads and updates

a memory location

• Example: xchg src, dest
• one instruction
• semantics: TEMP ← DEST; DEST ← SRC; SRC ← TEMP;

Spinlocks

acquire:
mov $1, eax ; Set EAX to 1
xchg eax, (rsi) ; Atomically swap EAX w/ lock val
test eax, eax ; check if EAX is 0 (lock unlocked)
jnz acquire ; if was locked, loop
ret ; lock has been acquired, return

release:
xor eax, eax ; Set EAX to 0
xchg eax, (rsi) ; Atomically swap EAX w/ lock val
ret ; lock has been released, return

Solution 5: use a lock
• You and your roommate share a refrigerator. Being good

roommates, you both try to make sure that the refrigerator
is always stocked with milk.

Algorithm 6:

acquire(&lock)
if (milk == 0) { // no milk
milk++; // buy milk

}
release(&lock)

Correct!

Exercise: Dining Philosophers
eat_thread(i){

while(True){
think();

pickup_fork(i);
pickup_fork(i+1%n);

eat();

putdown_fork(i);
putdown_fork(i+1%n);

}
}

Locks in C (pthreads)
• Defines lock type pthread_mutex_t

• Defines functions to create/destroy locks:
• int pthread_mutex_init(pthread_mutex_t *restrict lock,

const pthread_mutexattr_t *restrict attr);
• int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Defines functions to acquire/release a lock:
• int pthread_mutex_lock(pthread_mutex_t *lock);
• int pthread_mutex_trylock(pthread_mutex_t *lock);
• int pthread_mutex_unlock(pthread_mutex_t *lock);

Exercise

• TODO: Modify this example
to guarantee correctness

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{

long niters;
pthread_t tid1, tid2;

niters = atoi(argv[1]);
Pthread_create(&tid1, NULL,

thread, &niters);
Pthread_create(&tid2, NULL,

thread, &niters);
Pthread_join(tid1, NULL);
Pthread_join(tid2, NULL);

/* Check result */
if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);
else

printf("OK cnt=%ld\n", cnt);
exit(0);

}

/* Thread routine */
void *thread(void *vargp)
{

long i, niters =
*((long *)vargp);

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

Performance problems

• threads that fail to acquire a lock on the first attempt must
"spin", which wastes CPU cycles
• replace no-op with yield()

• threads get scheduled and de-scheduled while the lock is
still locked
• need a better synchronization primitive

Better Synchronization Primitives
• Semaphores

• stateful synchronization primitive

• Condition variables
• event-based synchronization primitive

Semaphores
• A semaphore s is a stateful synchronization primitive

comprised of:
• a value (non-negative integer)
• a lock
• a queue

• Interface:
• init(sem_t *s, 0, unsigned int val)
• P(sem_t * s): If s is nonzero, the P decrements s and returns

immediately. If s is zero, then adds the thread to queue(s); after
restarting, the P operation decrements s and returns.

• V(sem_t * s): Increments s by 1. If there are any threads in
queue(s), then V restarts exactly one of these threads, which then
completes the P operation.

Semantics of P and V

Binary Semaphore (aka mutex)
• A binary semaphore is a semaphore initialized with value 1.

• the value is always 0 or 1
• Used for mutual exclusion---it's a more efficient lock!

Counting Semaphores
• Can also initialize semaphores with values greater than 1
• Can use these counting semaphores to do more

complicated synchronization!

• … more on Wednesday

