Lecture 15: Virtual Memory

CS 105

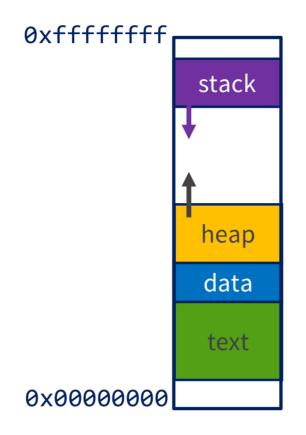
October 29, 2019

Multiprocessing

- Computer runs many processes simultaneously
- Running program "top" on Mac
 - System has 123 processes, 5 of which are active
 - Identified by Process ID (PID)

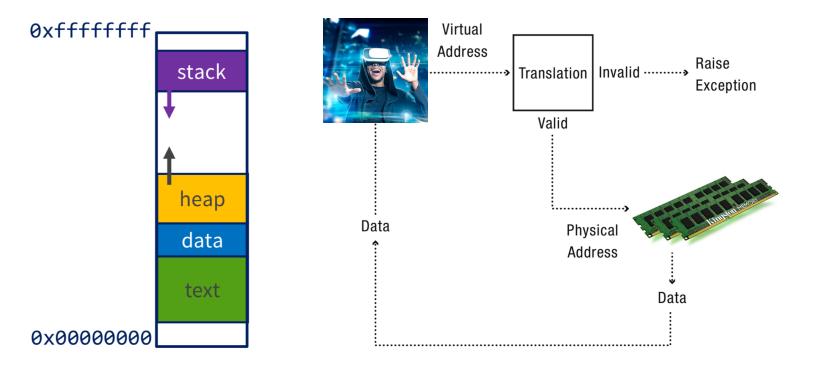
•			<u>?</u> elea	nor —	- top —	- 80×22				
			/Us	ers/ele	eanor –	- top				+
Proces	ses: 291 tota	l. 2 r	unnina. 2	39 sl	eepino	. 1761	threads		13	:28:14
	vg: 2.28, 3.5								7.43% id	le
SharedLibs: 184M resident, 52M data, 64M linkedit.										
MemRegions: 230644 total, 2090M resident, 85M private, 810M shared.										
PhysMem: 8160M used (2275M wired), 31M unused.										
VM: 1370G vsize, 1090M framework vsize, 390511252(0) swapins, 393866102(0) swapo										
Networks: packets: 117124661/108G in, 138330789/100G out.										
Disks:	65170326/229	7G rea	d, 558331	37/21	15G wr	itten.				
PID	COMMAND	%CPU	TIME	#TH	#WQ	#PORTS		PURG	CMPRS	PGRP
96079	bash	0.0	00:01.05	1	0	19	8192B	0B	1024K	96079
96078	login	0.0	00:00.10	2	1	30	8192B	0B	1916K	96078
92016	texstudio	0.0	42:37.65	17	2	315-	28M-	0B	193M	92016
89747	com.apple.ap	0.0	06:56.73	5	3	318	15M	0B	14M	89747
86347	hdiejectd	0.0	00:01.63	2	1	32	252K	0B	1124K	86347
86160	com.apple.We	0.0	01:42.54	7	2	207	1804K	0B	6720K	86160
86159	com.apple.We	0.0	01:44.81	5	2	121	796K	0B	6800K	86159
86156	com.apple.We	0.0	01:43.39	7	2	207	1700K	0B	7260K	86156
86155	com.apple.We	0.0	01:34.47	5	2	121	916K	0B	7436K	86155
82979	syspolicyd	0.0	00:10.78	3	2	52	816K	0B	5992K	82979
81953	accountsd	0.0	15:19.49	2	1	345	7252K	0B-	201M	81953
79035	rtcreporting	0 0	02:04.90	4	2	56	808K	0B	3668K	79035

Multiprocessing: The Illusion


Memory	Memory	Memory
Stack	Stack	 Stack
Heap	Heap	Heap
Data	Data	Data
Code	Code	Code
CPU	CPU	CPU
Registers	Registers	Registers

· Process provides each program with two key abstractions:

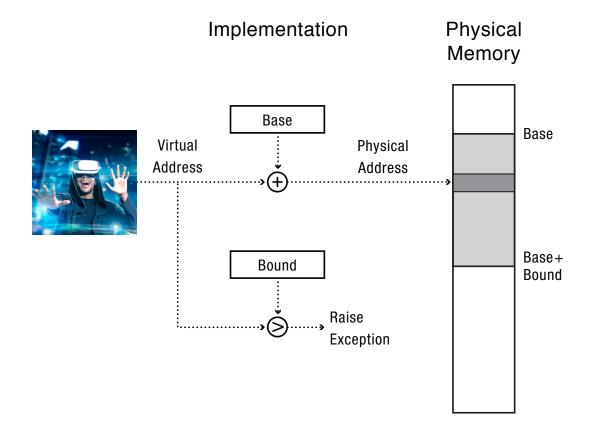
Logical control flow


- Each program seems to have exclusive use of the CPU
- Provided by kernel mechanism called context switching
- Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by kernel mechanism called virtual memory

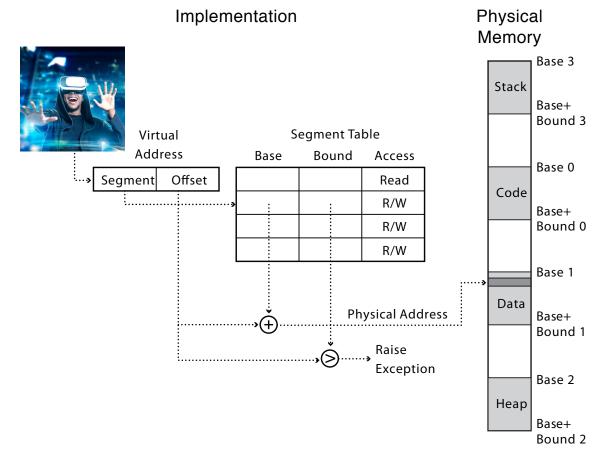
Virtual Memory Goals

- Isolation: don't want different process states collided in physical memory
- Utilization: want best use of limited resource
- Virtualization: want to create illusion of more resources
- Efficiency: want fast reads/writes to memory
- Sharing: want option to overlap for communication

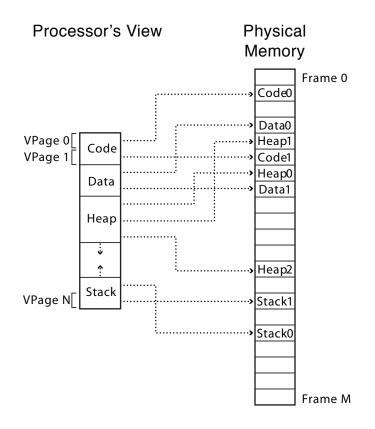
Address Translation

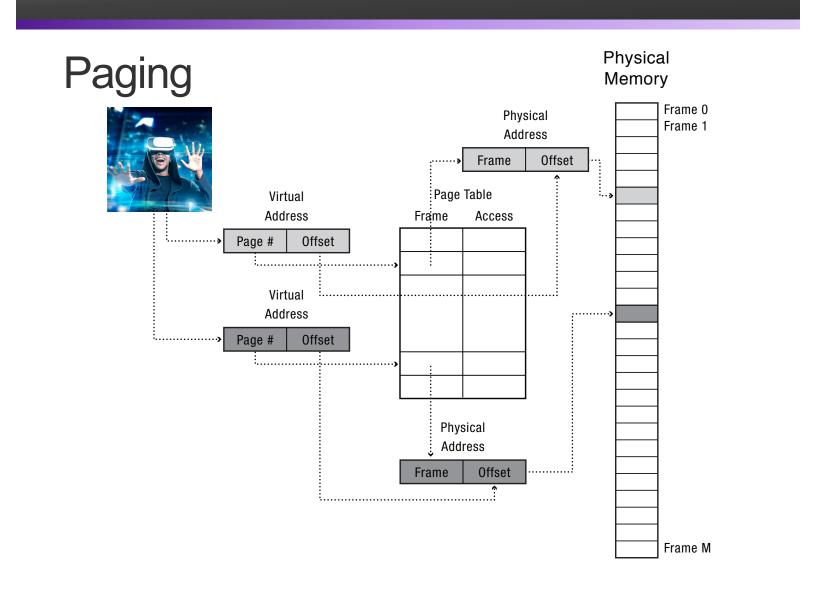


Base-and-Bound


Base-and-Bound

Segmentation


Segmentation



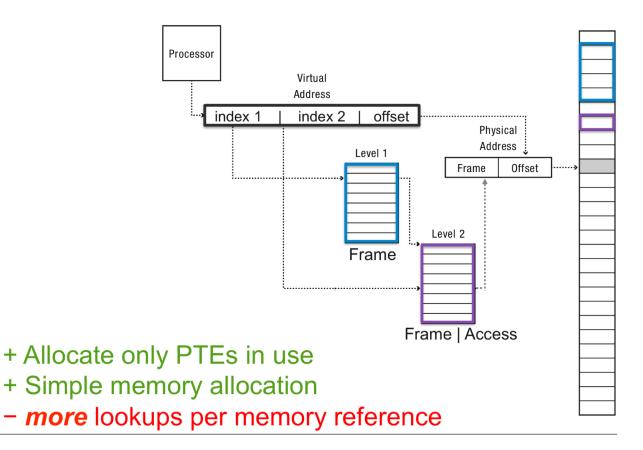
Paging

Memory as a Cache

- each page table entry has a valid bit
- for valid entries, frame indicates physical address of page in memory
- a page fault occurs when a program requests a page that is not currently in memory
 - takes time to handle, so context switch
 - evict another page in memory to make space (which one?)

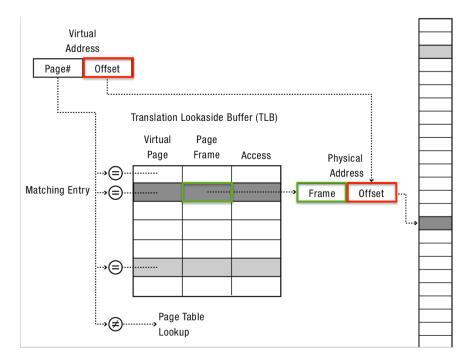
Page Replacement Algorithms

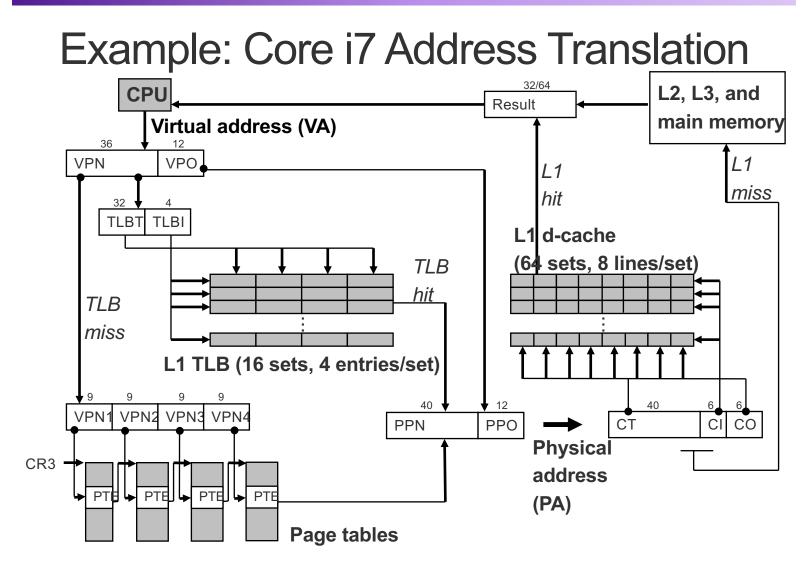
- Random: Pick any page to eject at random
 - Used mainly for comparison
- FIFO: The page brought in earliest is evicted
 - Ignores usage
- OPT: Belady's algorithm
 - Select page not used for longest time
- LRU: Evict page that hasn't been used for the longest
 - Past could be a good predictor of the future
- MRU: Evict the most recently used page
- LFU: Evict least frequently used page


Thrashing

- working set is the collection of a pages a process requires in a given time interval
- if it doesn't fit in memory, program with thrash

Efficient Paging


- How big should our pages be?
 - · How much internal fragmentation will there be?
 - How big is the page table?
 - Example: consider 64-bit address space, 4KB (2^12) page size, assume each page table entry is 8 bytes.
- Performance: every data/instruction access requires two memory accesses:
 - · One for the page table
 - One for the data/instruction


Multi-level page tables

Translation Look-aside Buffer (TLB)

 Translation lookaside buffer (TLB): special cache for page table entries

