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Lecture 15: Virtual Memory



Multiprocessing
• Computer runs many processes simultaneously
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)



Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory. 
• Provided by kernel mechanism called virtual memory
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Virtual Memory Goals

• Isolation: don’t want 
different process states 
collided in physical memory 

• Utilization: want best use 
of limited resource

• Virtualization: want to 
create illusion of more 
resources

• Efficiency: want fast 
reads/writes to memory

• Sharing: want option to 
overlap for communication



Address Translation
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Segmentation
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Paging
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Frame Access
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Memory as a Cache
• each page table entry has a valid bit
• for valid entries, frame indicates physical address of page 

in memory
• a page fault occurs when a program requests a page that 

is not currently in memory
• takes time to handle, so context switch
• evict another page in memory to make space (which one?)



Page Replacement Algorithms
• Random: Pick any page to eject at random 

• Used mainly for comparison 

• FIFO: The page brought in earliest is evicted 
• Ignores usage 

• OPT: Belady’s algorithm
• Select page not used for longest time 

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future 

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page 



Thrashing
• working set is the collection of a pages a process requires 

in a given time interval
• if it doesn't fit in memory, program with thrash



Efficient Paging
• How big should our pages be?

• How much internal fragmentation will there be?

• How big is the page table? 
• Example: consider 64-bit address space, 4KB (2^12) page size,  

assume each page table entry is 8 bytes.

• Performance: every data/instruction access requires two 
memory accesses: 
• One for the page table

• One for the data/instruction 



Multi-level page tables



Translation Look-aside Buffer (TLB)
• Translation lookaside buffer (TLB): special cache for 

page table entries 



Example: Core i7 Address Translation
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