
CS 105 October 29, 2019

Lecture 15: Virtual Memory

Multiprocessing
• Computer runs many processes simultaneously
• Running program “top” on Mac

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

Multiprocessing: The Illusion

• Process provides each program with two key abstractions:
• Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

• Private address space
• Each program seems to have exclusive use of main memory.
• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

Virtual Memory Goals

• Isolation: don’t want
different process states
collided in physical memory

• Utilization: want best use
of limited resource

• Virtualization: want to
create illusion of more
resources

• Efficiency: want fast
reads/writes to memory

• Sharing: want option to
overlap for communication

Address Translation

Base-and-Bound

Base-and-Bound

Base

Bound

Physical
Memory

Processor’s View Implementation

Virtual
Address

Virtual
Memory

Physical
Address

Base

Base+
Bound

Raise
Exception

Processor

Virtual
Address

Processor

Segmentation

Segmentation

Base Bound Access

Read

R/W

R/W

R/W

Segment Offset

Raise
Exception

Physical
Memory

ProcessRU·V View Implementation

Virtual
Address

Virtual
Memory

Physical Address

Base 3

Base+
Bound 3

Base 0

Base+
Bound 0

Base 1

Base+
Bound 1

Base 2

Base+
Bound 2

Processor
Virtual

Address
Segment Table

Processor

Code

Data

Heap

Stack

Stack

Data

Code

Heap

Paging

Paging
Physical
Memory

ProcesVRU·V View

Code 0

Data 0
Heap 1
Code 1
Heap 0
Data 1

Heap 2

Stack 1

Stack 0

Code

Data

Heap

Stack

VPage 0
VPage 1

VPage N

Frame 0

Frame M

Frame Access

Physical
Memory

Page Table

Processor

Frame 0
Frame 1

Frame M

Page # Offset

Virtual
Address

Page # Offset

Virtual
Address

Frame Offset

Physical
Address

Frame Offset

Physical
Address

Paging

Memory as a Cache
• each page table entry has a valid bit
• for valid entries, frame indicates physical address of page

in memory
• a page fault occurs when a program requests a page that

is not currently in memory
• takes time to handle, so context switch
• evict another page in memory to make space (which one?)

Page Replacement Algorithms
• Random: Pick any page to eject at random

• Used mainly for comparison

• FIFO: The page brought in earliest is evicted
• Ignores usage

• OPT: Belady’s algorithm
• Select page not used for longest time

• LRU: Evict page that hasn’t been used for the longest
• Past could be a good predictor of the future

• MRU: Evict the most recently used page
• LFU: Evict least frequently used page

Thrashing
• working set is the collection of a pages a process requires

in a given time interval
• if it doesn't fit in memory, program with thrash

Efficient Paging
• How big should our pages be?

• How much internal fragmentation will there be?

• How big is the page table?
• Example: consider 64-bit address space, 4KB (2^12) page size,

assume each page table entry is 8 bytes.

• Performance: every data/instruction access requires two
memory accesses:
• One for the page table

• One for the data/instruction

Multi-level page tables

Translation Look-aside Buffer (TLB)
• Translation lookaside buffer (TLB): special cache for

page table entries

Example: Core i7 Address Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB
miss

TLB
hit

Physical
address
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

