
CS 105 October 17, 2019

Lecture 13: Dynamic Memory (cont'd)

Dynamic Memory Allocation Goals

2

• Provide memory (in heap) to a running program (allocate)
• Recycle memory when done (free)

• High throughput

• Good memory usage
• Avoid fragmentation

Dynamic Memory Allocation Basics

3

• Maintaining free blocks
• Implicit lists, with boundary tags (nice and simple)
• Explicit lists, exclude free blocks (faster, but more overhead)
• Segregated lists (different lists for different sized blocks)
• Fancy data structures (red-black trees, for example)

• Allocation strategy
• First-fit, Next-fit, Best-fit

• Coalescing free blocks

Memory-Related Perils and Pitfalls

• Dereferencing bad pointers

• Reading uninitialized memory

• Overreading memory

• Overwriting memory

• Referencing freed blocks

• Freeing blocks multiple times

• Failing to free blocks

4

(Correctness)

(Correctness)

(Security)

(Security)

(Security)

(Security)

(Performance)

Tools for Dealing With Memory Bugs
• Debugger: gdb
• Good for finding bad pointer dereferences
• Hard to detect the other memory bugs

• Heap consistency checker (e.g., mcheck)
• Usually run silently, printing message only on error
• Can be used as a probe to find an error
• glibc malloc contains checking code

• setenv MALLOC_CHECK_ 3

• Binary translator: valgrind
• Powerful debugging and analysis technique
• Rewrites text section of executable object file
• Checks each individual reference at runtime

• Bad pointers, overwrites, refs outside of allocated block

5

But Memory Bugs Persist…

Impliit Allocators: Garbage Collection
• Garbage collection: automatic reclamation of heap-

allocated storage—application never has to free

• Common in many dynamic languages:
• Python, Java, Ruby, Perl, ML, Lisp, Mathematica

• Variants (“conservative” garbage collectors) exist for C
and C++
• However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Garbage Collection
• How does the memory manager know when memory can

be freed?
• In general we cannot know what is going to be used in the future

since it depends on conditionals
• But we can tell that certain blocks cannot be used if there are no

pointers to them

• Must make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers
• All pointers point to the start of a block
• Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

Memory as a Graph
• We view memory as a directed graph
• Each block is a node in the graph (called a heap node)
• Extra root nodes correspond to locations not in the heap that

contain pointers into the heap
• registers, local stack variables, or global variables

• Each pointer is an edge in the graph

Root nodes

Heap nodes

Memory as a Graph
• A node n is reachable if there exists a directed path from

some root node to n
• Heap nodes that are not reachable are garbage
• they can never again be used by the application
• they should be freed ("garbage collected")

Root nodes

Heap nodes
Not-reachable
(garbage)

reachable

Heap nodes

Memory as a Graph
• A node n is reachable if there exists a directed path from

some root node to n
• Heap nodes that are not reachable are garbage
• they can never again be used by the application
• they should be freed ("garbage collected")

Root nodes

Not-reachable
(garbage)

reachable

Garbage Collection
• The role of a garbage collector is

1. to maintain some representation of the reachability graph
2. to reclaim the unreachable nodes by freeing them

• this can happen periodically or collector can run in parallel with
application)

Languages that maintain tight control over how applications
create and use pointers (e.g., Java, Python, OCaml) can
maintain an exact representation of the graph

Collectors for languages like C/C++ will be conservative

Classical GC Algorithms
• Mark-and-sweep collection (McCarthy, 1960)
• Does not move blocks (unless you also “compact”)

• Reference counting (Collins, 1960)
• Does not move blocks

• Copying collection (Minsky, 1963)
• Moves blocks

• Generational Collectors (Lieberman and Hewitt, 1983)
• Collection based on lifetimes

• Most allocations become garbage very soon
• So focus reclamation work on zones of memory recently allocated

Mark and Sweep Collector
• Each block header has an extra mark bit
• can use one of the spare low-order bits

• Two phase protocol
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Mark and Sweep Collector
ptr mark(ptr p) {

if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

}

Conservative Mark & Sweep in C
• A “conservative garbage collector” for C programs
• build on top of malloc/free package
• allocate using malloc until you “run out of space”
• is_ptr() determines if a word is a pointer by checking if it points to

an allocated block of memory
• But, in C pointers can point to the middle of a block

• So how to find the beginning of the block?
• Can use a balanced binary tree to keep track of all allocated blocks

(key is start-of-block)
• Balanced-tree pointers can be stored in header (use two additional

words)

Header
ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Introduction to the Malloc Lab

17

Simulate a dynamic memory allocator by implementing four
functions

Goals are
• Correctness
• Performance: space utilization and throughput
• Programming style

int mm_init(void);
void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);

