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Lecture 12: Dynamic Memory



Memory Hierarchy
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Memory
• the heap is an area of 

memory maintained by a 
dynamic memory allocator

• programmers can use the 
dynamic memory allocator to 
acquire additional memory at 
run time
• e.g., for data structures whose 

size is not known at compile 
time

• the operating system kernel 
maintains a variable brk that 
points to the top of the heap
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Dynamic Memory Allocation

4

Dynamic memory allocator
• Manages the heap

• organizes the heap as a collection of (variable-size) blocks, each of 
which is either allocated or free

• allocates and deallocates memory
• may ask OS for additional heap space

• Part of the process’s runtime system
• Linked into program

Example dynamic memory allocators
• malloc and free in C
• new and delete in C++
• object creation & garbage collection in Java
• object creation & garbage collection in Python

explicit allocators

implicit allocators



#include <stdio.h>
#include <stdlib.h>
void foo(int n) {

int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Allocation Example using malloc
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Allocation Example
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p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)



Allocator Requirements
• Must handle arbitrary request sequences:

• cannot control number, size, or order of requests
• (but we'll assume that each free request corresponds to an allocated block)

• Must respond immediately:
• no reordering or buffering requests

• Must not modify allocated blocks:
• can only allocate from free memory on the heap
• cannot modify or move blocks once they are allocated

• Must align blocks:
• 8-byte (x86) or 16-byte (x86-64) alignment on Linux
• Ensures that allocated blocks can hold any type of data

• Must only use the heap:
• any data structures used by the allocator must be stored in the heap



First Example: A Simple Allocator
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void *brk;  // top of heap

void *malloc (size_t size) {
void *p = brk;
brk += align(size);
return p;

}

void free (void *ptr) {
// do nothing

}

Advantages
• Blazing fast
• Simple

Disadvantages
• Memory is never recycled



Performance Goals
• Throughput and Memory Utilization

• These goals are often conflicting

• Throughput
• Number of completed requests per unit time
• Example: if your allocator processes 5,000  malloc calls and 

5,000 free calls in 10 seconds then throughput is 1,000 
operations/second

• Peak Memory Utilization
• Minimize wasted space
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Peak Memory Utilization
• Given some sequence of malloc and free requests

R0, R1, ..., Rk, ... , Rn-1 the peak memory utilization after 
request k is !" =

$%&'() *'
+)

• Pi, is the aggregate payload, i.e., the sum of the currently allocated 
payloads after request i, where the payload of malloc(p) is p bytes

• Hk is the current heap size
• Assume Hk is monotonically nondecreasing
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Utilization Blocker: Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is 

smaller than block size

• Caused by 
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions 

(for example, returning a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure
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Utilization Blocker: External Fragmentation
• Occurs when there is enough aggregate heap memory, 

but no single free block is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure
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p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)



Challenges
• Strategic: maximize throughput and peak memory 

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
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Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra (4 byte) word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5
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Challenges
• Strategic: maximize throughput and peak memory 

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
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Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks
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5 4 26



Method 1: Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!
• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit
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Size

1 word

Format of
allocated and
free blocks Payload

a = 1: Allocated block  
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding



Detailed Implicit Free List Example

Start 
of 

heap

8-byte aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
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Challenges
• Strategic: maximize throughput and peak memory 

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?
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Implicit List: Finding a Free Block
• First fit. Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit. Like first fit, but search list starting where previous search finished:
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit. Search the list, choose the best free block: fits, with fewest bytes left 
over:
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit
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p = start; 
while ((p < end) &&     \\ not passed end

((*p & 1) ||     \\ already allocated
(*p <= len)))   \\ too small 

p = p + (*p & -2);    \\ goto next block (word addressed)



Challenges
• Strategic: maximize throughput and peak memory 

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?
• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in?
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Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

• Since allocated space might be smaller than free space, we might 
want to split the block
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void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1;  // round up to even
int oldsize = *p & -2;                // mask out low bit
*p = newsize | 1;                     // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining
}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 4)



Challenges
• Strategic: maximize throughput and peak memory 

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?
• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?
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Implicit List: Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 
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4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it



Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?
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void free_block(ptr p) {
*p = *p & -2;          // clear allocated flag
next = p + *p;         // find next block
if ((*next & 1) == 0)

*p = *p + *next;     // add to this block if
}                          //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone



Implicit List: Bidirectional Coalescing 
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!
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Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header



Constant Time Coalescing
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Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4



m1 1

Constant Time Coalescing (Case 1)
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m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1



Constant Time Coalescing (Case 2)
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m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0



m1 0

Constant Time Coalescing (Case 3)
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m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1



m1 0

Constant Time Coalescing (Case 4)
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m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0



Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: linear time in the worst case
• Free cost: constant time worst case–even with coalescing
• Memory usage: depends on the placement policy

• First-fit, next-fit, or best-fit

• Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

• However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within 

each free block, and the length used as a key
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Segregated Lists
• Each size class of blocks has its own free list

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf



Segregated List Blocks
Allocated Blocks Free Blocks

Block Size

Free Space

0

FW Free Block Ptr

BK Free Block Ptr

Block Size 0

Block Size

Allocated 
Payload

1

Block Size 1

Padding (optional)



Seglist Allocator
• To allocate a block of size n:

• Search appropriate free list for block of size m > n

• If an appropriate block is found:
• Split block and place fragment on appropriate list (optional)

• If no block is found:
• try next larger class
• Repeat until block is found

• If no block is found in any list:
• Request additional heap memory from OS (using sbrk())
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.



Seglist Allocator (cont.)
• To free a block:

• Coalesce and place on appropriate list 

• Advantages of seglist allocators
• Higher throughput

• log time for power-of-two size classes
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search of 
entire heap.

• Extreme case: Giving each block its own size class is equivalent to 
best-fit.



Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation
• segregated free lists approximate a best fit placement policy without 

having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called 
• Deferred coalescing: try to improve performance of free by 

deferring coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches some 

threshold
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