
CS 105 October 15, 2019

Lecture 12: Dynamic Memory

Memory Hierarchy

2

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Memory
• the heap is an area of

memory maintained by a
dynamic memory allocator

• programmers can use the
dynamic memory allocator to
acquire additional memory at
run time
• e.g., for data structures whose

size is not known at compile
time

• the operating system kernel
maintains a variable brk that
points to the top of the heap

Stack

0x7FFFFFFF

%rsp

0x00000000

Data

Code

Heap

%rip

brk

Dynamic Memory Allocation

4

Dynamic memory allocator
• Manages the heap

• organizes the heap as a collection of (variable-size) blocks, each of
which is either allocated or free

• allocates and deallocates memory
• may ask OS for additional heap space

• Part of the process’s runtime system
• Linked into program

Example dynamic memory allocators
• malloc and free in C
• new and delete in C++
• object creation & garbage collection in Java
• object creation & garbage collection in Python

explicit allocators

implicit allocators

#include <stdio.h>
#include <stdlib.h>
void foo(int n) {

int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Allocation Example using malloc

5

Allocation Example

6

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Allocator Requirements
• Must handle arbitrary request sequences:

• cannot control number, size, or order of requests
• (but we'll assume that each free request corresponds to an allocated block)

• Must respond immediately:
• no reordering or buffering requests

• Must not modify allocated blocks:
• can only allocate from free memory on the heap
• cannot modify or move blocks once they are allocated

• Must align blocks:
• 8-byte (x86) or 16-byte (x86-64) alignment on Linux
• Ensures that allocated blocks can hold any type of data

• Must only use the heap:
• any data structures used by the allocator must be stored in the heap

First Example: A Simple Allocator

8

void *brk; // top of heap

void *malloc (size_t size) {
void *p = brk;
brk += align(size);
return p;

}

void free (void *ptr) {
// do nothing

}

Advantages
• Blazing fast
• Simple

Disadvantages
• Memory is never recycled

Performance Goals
• Throughput and Memory Utilization

• These goals are often conflicting

• Throughput
• Number of completed requests per unit time
• Example: if your allocator processes 5,000 malloc calls and

5,000 free calls in 10 seconds then throughput is 1,000
operations/second

• Peak Memory Utilization
• Minimize wasted space

9

Peak Memory Utilization
• Given some sequence of malloc and free requests

R0, R1, ..., Rk, ... , Rn-1 the peak memory utilization after
request k is !" =

$%&'() *'
+)

• Pi, is the aggregate payload, i.e., the sum of the currently allocated
payloads after request i, where the payload of malloc(p) is p bytes

• Hk is the current heap size
• Assume Hk is monotonically nondecreasing

10

Utilization Blocker: Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is

smaller than block size

• Caused by
• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions

(for example, returning a big block to satisfy a small request)

• Depends only on the pattern of previous requests
• Thus, easy to measure

11

Payload Internal
fragmentation

Block

Internal
fragmentation

Utilization Blocker: External Fragmentation
• Occurs when there is enough aggregate heap memory,

but no single free block is large enough

• Depends on the pattern of future requests
• Thus, difficult to measure

12

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?

13

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra (4 byte) word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

14

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?

15

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

16

5 4 26

Method 1: Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!
• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

17

Size

1 word

Format of
allocated and
free blocks Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start
of

heap

8-byte aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

18

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?

19

Implicit List: Finding a Free Block
• First fit. Search list from beginning, choose first free block that fits:

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit. Like first fit, but search list starting where previous search finished:
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit. Search the list, choose the best free block: fits, with fewest bytes left
over:
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

20

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?

21

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

• Since allocated space might be smaller than free space, we might
want to split the block

22

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Challenges
• Strategic: maximize throughput and peak memory

utilization

• Implementation:
• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we pick a block to use for allocation—many might fit?
• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we reinsert a freed block?

23

Implicit List: Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

24

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

• But how do we coalesce with previous block?

25

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks
• Allows us to traverse the “list” backwards, but requires extra space
• Important and general technique!

26

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

27

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

28

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Constant Time Coalescing (Case 2)

29

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

m1 0

Constant Time Coalescing (Case 3)

30

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

31

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: linear time in the worst case
• Free cost: constant time worst case–even with coalescing
• Memory usage: depends on the placement policy

• First-fit, next-fit, or best-fit

• Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

• However, the concepts of splitting and boundary tag
coalescing are general to all allocators

32

Keeping Track of Free Blocks
• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

• Method 4: Blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within

each free block, and the length used as a key

33

5 4 26

5 4 26

Segregated Lists
• Each size class of blocks has its own free list

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Segregated List Blocks
Allocated Blocks Free Blocks

Block Size

Free Space

0

FW Free Block Ptr

BK Free Block Ptr

Block Size 0

Block Size

Allocated
Payload

1

Block Size 1

Padding (optional)

Seglist Allocator
• To allocate a block of size n:

• Search appropriate free list for block of size m > n

• If an appropriate block is found:
• Split block and place fragment on appropriate list (optional)

• If no block is found:
• try next larger class
• Repeat until block is found

• If no block is found in any list:
• Request additional heap memory from OS (using sbrk())
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)
• To free a block:

• Coalesce and place on appropriate list

• Advantages of seglist allocators
• Higher throughput

• log time for power-of-two size classes
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search of
entire heap.

• Extreme case: Giving each block its own size class is equivalent to
best-fit.

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation
• segregated free lists approximate a best fit placement policy without

having to search entire free list

• Splitting policy:
• When do we go ahead and split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
• Immediate coalescing: coalesce each time free is called
• Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches some

threshold

38

