
CS 105 October 10, 2019

Lecture 11: Caches (cont'd)

Memory Hierarchy

2

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Principle of Locality

3

Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Cache Lines

• data block: cached data

• tag: uniquely identifies which data is stored in the cache line

• valid bit: indicates whether or not the line contains
meaningful information

0 1 2 7tagv 3 654

valid bit tag data block

Caching—The Organization

5

• An address is decomposed into three parts
• Low-order b bits, providing an offset into a block (2b is the data

block size)
• Middle s bits, indicating which set in the cache to search (2s is the

number of sets)
• Upper remaining bits, the tag to be matched

Address of data: tag offsetindex

Direct-mapped Cache

6

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line

identifies byte in line

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

lin
es

) b
its

log
(bl

oc
k s

ize
) b

its

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?

2-way Set Associative Cache

7

E = 2: Two lines per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

se
ts)

 bi
ts

log
(bl

oc
k s

ize
) b

its

Exercise: 2-way Set Associative Cache

Line 0
Line 1

Set 0 Set 1

Line 0 Line 1 Line 0 Line 1

Exercise: 2-way Set Associative Cache
Cache

Transaction tag index h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x10
rd 0x20

Memory
rd 0x14
rd 0x10
rd 0x0c
rd 0x08
rd 0x04
rd 0x00

17

13

16
15
14

18

Line 0 Line 1 Line 0 Line 1
? ? ? ?

Assume 8 byte data blocks

Set 0 Set 1

Set 0 Set 1

Eviction from the Cache

10

On a cache miss, a new block is loaded into the cache

• Direct-mapped cache: A valid block at the same location
must be evicted—no choice

• Associative cache: If all blocks in the set are valid, one
must be evicted
• Random policy
• FIFO
• LIFO
• Least-recently used; requires extra data in each set
• Most-recently used; requires extra data in each set

Caching Organization Summarized

11

• A cache consists of lines

• A line contains
• A block of bytes, the data values from memory
• A tag, indicating where in memory the values are from
• A valid bit, indicating if the data are valid

• Lines are organized into sets
• Direct-mapped cache: one line per set
• k-way associative cache: k lines per set
• Fully associative cache: all lines in one set

Caching and Writes

12

• What to do on a write-hit?
• Write-through: write immediately to memory
• Write-back: defer write to memory until replacement of line

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate: load into cache, update line in cache

• Good if more writes to the location follow
• No-write-allocate: writes straight to memory, does not load into

cache
• Typical

• Write-through + No-write-allocate
• Write-back + Write-allocate

Line 0 Line 1 Line 2 Line 3 W
? ? ? ? ?

Transaction tag index h/m
rd 0x10
wr 0x10
wr 0x24
rd 0x24
rd 0x20

Example: Write-through + No-write-allocate
CacheMemory

rd 0x24
rd 0x20
rd 0x1c
rd 0x18
rd 0x14
rd 0x10

21

17

20
19
18

22

Assume 4 byte data blocks

Exercise: Write-back + Write-allocate
CacheMemory

rd 0x24
rd 0x20
rd 0x1c
rd 0x18
rd 0x14
rd 0x10

21

17

20
19
18

22

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
? ? ? ? ?

Transaction tag index h/m
rd 0x10
wr 0x10
wr 0x24
rd 0x24
rd 0x20

Categorizing Misses
• Compulsory: first-reference to a block
• Capacity: cache is too small to hold all of the data
• Conflict: collisions in a specific set

Classifying misses in a cache with a target capacity and
associativity as a sequence of three questions:

1. Would this miss occur in a cache with infinite capacity? If the
answer is yes, then this is a compulsory miss and we are done. If
the answer is no, then consider question 2.

2. Would this miss occur in a fully associative cache with the desired
capacity? If the answer is yes, then this is a capacity miss and we
are done. If the answer is no, then consider question 3.

3. Would this miss occur in a cache with the desired capacity and
associativity? If the answer is yes, then this is a conflict miss and we
are done. If the answer is no, then this is not a miss – it is a hit!

Typical Intel Core i7 Hierarchy

16

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Example: Cache-Aware Optimization
ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];

}
}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}

17

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
yc

le
s

pe
r i

nn
er

 lo
op

 it
er

at
io

n

Array size (n)

jki
kji
ijk
jik
kij
ikj

ijk / jik

jki / kji

kij / ikj

18

Pentium III Xeon Matrix Multiply Performance

blocked matrix mutiply

jki / kji

kij / ikj

ijk / jik

