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Lecture 11: Caches (cont'd)



Memory Hierarchy
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Remote secondary storage
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Local disks hold files 
retrieved from disks 
on remote servers
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L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved from 
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disk blocks retrieved
from local disks.



Principle of Locality
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Programs tend to use data and instructions with addresses 
near or equal to those they have used recently

} Temporal locality:  
} Recently referenced items are likely 

to be referenced again in the near future

} Spatial locality:  
} Items with nearby addresses tend 

to be referenced close together in time



Cache Lines

• data block: cached data

• tag: uniquely identifies which data is stored in the cache line

• valid bit: indicates whether or not the line contains 
meaningful information

0 1 2 7tagv 3 654

valid bit tag data block



Caching—The Organization
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• An address is decomposed into three parts
• Low-order b bits, providing an offset into a block (2b is the data 

block size)
• Middle s bits, indicating which set in the cache to search (2s is the 

number of sets)
• Upper remaining bits, the tag to be matched

Address of data: tag offsetindex



Direct-mapped Cache
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0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line 

identifies byte in line

Address of data: tag offsetindex
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How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?



2-way Set Associative Cache
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E = 2: Two lines per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Address of data: tag offsetindex
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Exercise: 2-way Set Associative Cache

Line 0
Line 1

Set 0 Set 1

Line 0 Line 1 Line 0 Line 1 



Exercise: 2-way Set Associative Cache
Cache

Transaction tag index h/m
rd 0x00
rd 0x04
rd 0x14
rd 0x00
rd 0x04
rd 0x10
rd 0x20

Memory 
rd 0x14
rd 0x10
rd 0x0c
rd 0x08
rd 0x04
rd 0x00
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Line 0 Line 1 Line 0 Line 1
? ? ? ?

Assume 8 byte data blocks

Set 0 Set 1

Set 0 Set 1



Eviction from the Cache
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On a cache miss, a new block is loaded into the cache

• Direct-mapped cache: A valid block at the same location 
must be evicted—no choice

• Associative cache: If all blocks in the set are valid, one 
must be evicted
• Random policy
• FIFO
• LIFO
• Least-recently used; requires extra data in each set
• Most-recently used; requires extra data in each set



Caching Organization Summarized
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• A cache consists of lines

• A line contains
• A block of bytes, the data values from memory
• A tag, indicating where in memory the values are from
• A valid bit, indicating if the data are valid

• Lines are organized into sets
• Direct-mapped cache: one line per set
• k-way associative cache: k lines per set
• Fully associative cache: all lines in one set



Caching and Writes
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• What to do on a write-hit?
• Write-through: write immediately to memory
• Write-back: defer write to memory until replacement of line

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate: load into cache, update line in cache

• Good if more writes to the location follow
• No-write-allocate: writes straight to memory, does not load into 

cache
• Typical

• Write-through + No-write-allocate
• Write-back + Write-allocate



Line 0 Line 1 Line 2 Line 3 W
? ? ? ? ?

Transaction tag index h/m
rd 0x10
wr 0x10
wr 0x24
rd 0x24
rd 0x20

Example: Write-through + No-write-allocate
CacheMemory 

rd 0x24
rd 0x20
rd 0x1c
rd 0x18
rd 0x14
rd 0x10
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Assume 4 byte data blocks



Exercise: Write-back + Write-allocate
CacheMemory 

rd 0x24
rd 0x20
rd 0x1c
rd 0x18
rd 0x14
rd 0x10

21

17

20
19
18

22

Assume 4 byte data blocks

Line 0 Line 1 Line 2 Line 3 W
? ? ? ? ?

Transaction tag index h/m
rd 0x10
wr 0x10
wr 0x24
rd 0x24
rd 0x20



Categorizing Misses
• Compulsory: first-reference to a block
• Capacity: cache is too small to hold all of the data
• Conflict: collisions in a specific set 

Classifying misses in a cache with a target capacity and 
associativity as a sequence of three questions: 

1. Would this miss occur in a cache with infinite capacity? If the 
answer is yes, then this is a compulsory miss and we are done. If 
the answer is no, then consider question 2. 

2. Would this miss occur in a fully associative cache with the desired 
capacity? If the answer is yes, then this is a capacity miss and we 
are done. If the answer is no, then consider question 3. 

3. Would this miss occur in a cache with the desired capacity and 
associativity? If the answer is yes, then this is a conflict miss and we 
are done. If the answer is no, then this is not a miss – it is a hit! 



Typical Intel Core i7 Hierarchy
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Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified 
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
256 KB, 8-way, 

Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 



Example: Cache-Aware Optimization
ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += a[i][k] * b[k][j];

c[i][j] = sum;
}
} 
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][j];   

}
}
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[k][j];
for (i=0; i<n; i++)
c[i][j] += a[i][k] * r;

}
}
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Core i7 Matrix Multiply Performance
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Pentium III Xeon Matrix Multiply Performance

blocked matrix mutiply

jki / kji

kij / ikj

ijk / jik


