
CS 105 October 8, 2019

Lecture 10: Caches

Life without caches
• You decide that you want to learn more about computer

systems than is covered in this course
• The library contains all the books you could possibly want,

but you don't like to study in libraries, you prefer to study
at home.

• You have the following constraints:

Desk
(can hold one book)

Library
(can hold many books)

Life without caches

• Average latency to access a
book: 40mins

• Average throughput
(incl. reading time): 1.2 books/hr

A Computer System

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

The CPU-Memory Gap

5

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

DRAM

CPU

SSD

Disk

SRAM

Caching—The Very Idea

6

• Keep some memory values nearby in fast memory

• Modern systems have 3 or even 4 levels of caches

• Cache idea is widely used:
• Disk controllers
• Web
• (Virtual memory: main memory is a “cache” for the disk)

Memory Hierarchy

7

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud, web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

Latency numbers every programmer
should know (2019)

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Main memory reference 100 ns
memory 1MB sequential read 4,000 ns 4 !s
SSD random read 16,000 ns 16 !s
SSD 1MB sequential read 62,000 ns 62 !s
Disk random read 3,000,000 ns 3 ms
Disk 1MB sequential read 947,000 ns < 1 ms
Round trip in Datacenter 500,000 ns 500 !s
Round trip CA<->Europe 150,000,000 ns 150 ms

Life with caching

• Average latency to access a book: <20mins
• Average throughput (incl. reading time): ~2 books/hr

Caching—The Vocabulary

10

• Size: the total number of bytes that can be stored in the cache

• Cache Hit: the desired value is in the cache and returned quickly
• Cache Miss: the desired value is not in the cache and must be

fetched from a more distant cache (or ultimately from main
memory)

• Miss rate: the fraction of accesses that are misses

• Hit time: the time to process a hit
• Miss penalty: the additional time to process a miss

• Average access time: hit-time + miss-rate * miss-penalty

Question: how do we decide which books
to put on the bookshelf?

Example Access Patterns

Principle of Locality

13

Programs tend to use data and instructions with addresses
near or equal to those they have used recently

} Temporal locality:
} Recently referenced items are likely

to be referenced again in the near future

} Spatial locality:
} Items with nearby addresses tend

to be referenced close together in time

Locality Example

14

• Data references
• Reference array elements in succession (stride-

1 reference pattern).
• Reference variable sum each iteration.

• Instruction references
• Reference instructions in sequence.
• Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Locality Example
• Which of the following functions is better in terms of

locality with respect to array src?

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

CACHE ORGANIZATION

Cache Lines

• data block: cached data

• tag: uniquely identifies which data is stored in the cache line

• valid bit: indicates whether or not the line contains
meaningful information

0 1 2 7tagv 3 654

valid bit tag data block

Direct-mapped Cache

20

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find line

identifies byte in line

Address of data: tag offsetindex

the
 re

st
of

the
 bi

ts

log
(#

lin
es

) b
its

log
(bl

oc
k s

ize
) b

its

Example: Direct-mapped Cache

0D 00 00 001011 00 00002F

00 00 00 1D0011 00 064000

0F 12 AB 681101 34 EAFFFF

00 11 22 770010 33 665544

Assume: cache block size 8 bytes

Address of data:

Assume: assume 8-bit machine
0xB4

1011 0100

3 b
it t

ag
2 b

it i
nd

ex
3 b

it o
ffs

et

101 10010

Line 0

Line 1

Line 2

Line 3

Exercise: Direct-mapped Cache

How well does this take advantage of spacial locality?
How well does this take advantage of temporal locality?

Transaction Stream
rd 0x00
rd 0x04
rd 0x10
rd 0x00
rd 0x04
rd 0x20

Memory
rd 0x14
rd 0x10
rd 0x0c
rd 0x08
rd 0x04
rd 0x00

17

13

16
15
14

Cache

Transaction tag index h/m Line 0 Line 1
rd 0x00 ? ?
rd 0x04
rd 0x10
rd 0x00
rd 0x04
rd 0x10

18

Line 2 Line 3
? ?

