9/10/19

CS 105, Computer Systems Pomona College

C and Assembly Language

I September 10, 2019

CS 105, Computer Systems Pomona College

Today

» Strings and structs, left over from last time
» Compiling with gec
» C Language topics

» Arrays and pointers

» Typedefs

» Structs

» Memory Management

» Introduction to X64 Assembly Language

CS 105, Computer Systems Pomona College

Strings

» In C, strings are simply arrays (pointers) of type char

» The end of the string is marked with a 0x00 byte

» Example: The string 105" is represented by four bytes:
0x 31 30 35 00

» Pitfall: Writing a long string into a small space. You may
overwrite other data

105, Computer Systems Pomona College

Structs

» Heterogeneous records, like Java objects

» Typical linked list declaration: [typedef struct cell {
int value;
struct cell *next;
} cell t;

» Usage: cell t c; How many bytes are
c.value = 42; allocated for c?
c.next = NULL; for p?

» Usage with pointers: |cell t *p;

p->value = 42; pP->next isan
Find the error > p->next = NULL; abbreviation for
(*p) .next

CS 105, Computer Systems Pomona College

gcc, Typical Compilation

From the Data Lab:

$ gcc -0 -Wall -Im -o btest bits.c btest.c decl.c tests.c
$./btest

Easier:

$ make
$./btest

CS 105, Computer Systems Pomona College

gcc Option Summary

Output options

Defaultis a.out

-o <filename>, output goes to the named file

-c, compile but do not link; output goes to program. o
-8, assemble only; output goes to program. s

v v

v v

Optimization options (uppercase “Oh,” not zero!)
» -0, -01, -02, -03, -Og

Debugging option: -g, include symbolic debugging information

Warning option example: -wall

Library option example: -1m, link with the math library

9/10/19

CS 105, Computer Systems Pomona College CS 105, Computer Systems Pomona College
gcc and File Types Managing Compilation with make
Some files from the Datalab: » make is a command that reads Makefile
Makefile » Example extracted from the Datalab Makefile:
README . .
Makefile that builds btest and other helper programs for the CS:APP data lab)
bits.c Source file #
N CC = gcc
bits.h Include file CFLAGS = -0 -Wall
bits.o Object file gcc —c bits.c LIBS = -lm
bits.s Assembly listing gcc -S bits.c all: btest fshow ishow
btest Executable program gcc —o btest btest.c bits.o decl.o . .
btest: btest.c bits.c decl.c tests.c btest.h bits.h
btest.c $(CC) $(CFLAGS) $(LIBS) -o btest bits.c btest.c decl.c tests.c
btest.h fshow: fshow.c
btest.o $(CC) $(CFLAGS) -o fshow fshow.c
dlc

» Actions taken only when sources are newer than target

» all is assumed when no target is given on the command line

6 7

CS 105, Computer Systems Pomona College CS 105, Computer Systems Pomona College

Preprocessor Directives Memory Management—Creation

#include <filename>

#include “filename”
» Usually include header files, with extension .h » void *malloc(size_t size);

» Allocates a block of (at least) size bytes

#define PI 3.14
» #define TIMESFOUR(J) ((j)<<2)
» Textual substitution--parentheses are important!

» Returns a pointer to the start of the block
» The block exists (on the heap) until it is explicitly recycled

> #if #elif #else #endif
#ifndef STDIO H » Usage:
PR _CEE) » cell_t *cp = (cell t *)malloc(sizeof (cell_t));
All of the code » Must cast the result of malloc
#endif /* STDIO H */

CS 105, Computer Systems Pomona College CS 105, Computer Systems Pomona College
Memory Management—Recycling New Topic: X64 Assembly Language
» void fr void *ptr); . L .
oid ee(void *ptr); » Intel Pentium: 64 bit instruction set

» ptr must be a value previously returned by malloc

» Recycles the previously allocated memory block

» Error to free twice » Evolutionary design, going back to 8086 in 1978

» “Memory leak” when we forget to free » Basis for original IBM Personal Computer, 16-bits
) Usage: » Other languages are translated into X64 instructions and

» free(cp) ; then executed on the CPU

» No need for cast; void* is compatible with any pointer type » Actual instructions are sequences of bytes

» We give them mnemonic names
More onmalloc and £ree later in the course!

10 11

CS 105, Computer Systems Pomona College

9/10/19

CS 105, Computer Systems Pomona College

Assembly/Machine Code View

CPU Addresses Memory
- Data COde
[=]
Stack
Instructions Heap
Programmer-Visible State Memory
» PC: Program counter Byte addressable array
» 16 Registers Code and user data
» Condition codes Stack to support
procedures

Assembly/Machine Code View

CPU Addresses Memory
- Data Code
[=]
Stack
Instructions Heap
Repeat forever:

» Fetch instruction at address in PC
» Execute the instruction
» Update PC

CS 105, Computer Systems Pomona College

CS 105, Computer Systems Pomona College

X86-64 Integer Registers

%rax $eax $r8 $r8d
%rbx %ebx %$r9 %r9d
%rcx [secx		%r10 [sr10d
%rdx [seax		%r11 sri1d
%rsi ‘%esi		%r12 ‘%rlZd

$rdi Sedi %$rl3 $r13d
$rsp %esp $rld %rlad

|#xbp [sebp | |ax15 [sr1sa |

» Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

14

X86-64 Register Usage Conventions

%rax, function result %r8
%rbx %$r9
%rcx, fourth argument		%r10
%rdx, third argument		%r11
%rsi, second argument		%r12
%rdi, firstargument %rl3		
%rsp, stack pointer $rld		
2xbp	sr15	

Callee-saved registers are in yellow

CS 105, Computer Systems Pomona College

CS 105, Computer Systems Pomona College

Assembly Characteristics: Data Types

» “Integer” data of 1, 2, 4, or 8 bytes
» Data values

» Addresses (untyped pointers)

v

Floating point data of 4, 8, or 10 bytes

v

Code: Byte sequences encoding series of instructions

v

No aggregate types such as arrays or structures

» Just contiguously allocated bytes in memory

Assembly Characteristics: Operations

» Perform arithmetic function on register or memory data

v

Transfer data between memory and register
» Load data from memory into register

» Store register data into memory

Transfer control

v

» Unconditional jumps to/from procedures
» Conditional branches

9/10/19

CS 105, Computer Systems Pomona College

CS 105, Computer Systems

Pomona College

Compiling into Assembly Machine Instruction Example

long plus(long x, long y); sumstore:

pushq %$rbx
movq $rdx, %rbx
call plus

void sumstore(long x, long y,
long *dest) {

long t = plus(x, y); movq Zr;x, (¥rbx)
*dest = t; g:zq ERX

Obtain assembly listing (on pom-itb-cs2) with command
gcc -Og -S sum.c

Produces the file sum. s

May get very different results on different machines!

l*dest =t;

l » CCode

» Store value t where
designated by dest

‘movq %$rax,

(%rbx) \ » Assembly

» Move 8-byte value to memory
Quad words in x86-64
parlance

» Operands:

t: Register $rax
dest: Register $rbx
*dest: Memory M[$rbx]

0x40059e:

48 89 03 | » Object Code

» 3-byte instruction
» at address 0x40059e

CS 105, Computer Systems

Disassembling Object Code

Pomona College

CS 105, Computer Systems

Alternate Disassembly

Pomona College

Dump of assembler code for function sumstore:

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff £ff callg 400590 <plus>
4005%: 48 89 03 mov %rax, ($rbx)
4005al: 5b pop $rbx
4005a2: «c3 retq

» Disassembler
$ objdump —-d sum
» Useful tool for examining object code
» Analyzes bit pattern of series of instructions
» Produces approximate rendition of assembly code
» Can be run on either a. out (complete executable) or . o file

0x0000000000400595 <+0>: push
0x0000000000400596 <+1>: mov
0x0000000000400599 <+4>: callq
0x000000000040059%e <+9>: mov
0x00000000004005a1 <+12>:pop
0x00000000004005a2 <+13>:retq

$rbx

%$rdx, $rbx
0x400590 <plus>
%$rax, ($rbx)
$rbx

» Using the gdb Debugger
$ gdb sum

(gdb) disassemble sumstore

(gdb) x/14xb sumstore

O Examine the 14 bytes starting at sumstore

