
9/10/19

1

CS 105, Computer Systems Pomona College

C and Assembly Language

September 10, 2019

CS 105, Computer Systems Pomona College

Today

1

} Strings and structs, left over from last time
} Compiling with gcc

} C Language topics
} Arrays and pointers
} Typedefs
} Structs
} Memory Management

} Introduction to X64 Assembly Language

CS 105, Computer Systems Pomona College

Strings

2

} In C, strings are simply arrays (pointers) of type char

} The end of the string is marked with a 0x00 byte

} Example: The string ”105” is represented by four bytes:
0x 31 30 35 00

} Pitfall: Writing a long string into a small space. You may
overwrite other data

CS 105, Computer Systems Pomona College

Structs

3

} Heterogeneous records, like Java objects
} Typical linked list declaration:

} Usage:

} Usage with pointers:

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

How many bytes are
allocated for c?
for p?

p->next is an
abbreviation for
(*p).next

Find the error →

CS 105, Computer Systems Pomona College

gcc, Typical Compilation

4

From the Data Lab:

$ gcc –O –Wall –lm -o btest bits.c btest.c decl.c tests.c
$./btest

Easier:

$ make
$./btest

CS 105, Computer Systems Pomona College

gcc Option Summary

5

} Output options
} Default is a.out
} -o <filename>, output goes to the named file
} -c, compile but do not link; output goes to program.o
} -S, assemble only; output goes to program.s

} Optimization options (uppercase “Oh,” not zero!)
} -O,–O1, –O2,–O3, -Og

} Debugging option: -g, include symbolic debugging information

} Warning option example: -Wall

} Library option example: -lm, link with the math library

9/10/19

2

CS 105, Computer Systems Pomona College

gcc and File Types

6

Makefile

README

bits.c Source file
bits.h Include file
bits.o Object file gcc –c bits.c

bits.s Assembly listing gcc –S bits.c

btest Executable program gcc –o btest btest.c bits.o decl.o

btest.c

btest.h

btest.o

dlc

…

Some files from the Datalab:

CS 105, Computer Systems Pomona College

Managing Compilation with make

7

} make is a command that reads Makefile
} Example extracted from the Datalab Makefile:

} Actions taken only when sources are newer than target

} all is assumed when no target is given on the command line

Makefile that builds btest and other helper programs for the CS:APP data lab
#
CC = gcc
CFLAGS = -O -Wall
LIBS = -lm

all: btest fshow ishow

btest: btest.c bits.c decl.c tests.c btest.h bits.h
$(CC) $(CFLAGS) $(LIBS) -o btest bits.c btest.c decl.c tests.c

fshow: fshow.c
$(CC) $(CFLAGS) -o fshow fshow.c

CS 105, Computer Systems Pomona College

Preprocessor Directives

8

} #include <filename>
} #include “filename”

} Usually include header files, with extension .h

} #define PI 3.14
} #define TIMESFOUR(j) ((j)<<2)

} Textual substitution--parentheses are important!

} #if #elif #else #endif

#ifndef _STDIO_H_
#define _STDIO_H_

All of the code

#endif /* _STDIO_H_ */

CS 105, Computer Systems Pomona College

Memory Management—Creation

9

} void *malloc(size_t size);
} Allocates a block of (at least) size bytes
} Returns a pointer to the start of the block
} The block exists (on the heap) until it is explicitly recycled

} Usage:
} cell_t *cp = (cell_t *)malloc(sizeof(cell_t));

} Must cast the result of malloc

CS 105, Computer Systems Pomona College

Memory Management—Recycling

10

} void free(void *ptr);
} ptr must be a value previously returned by malloc
} Recycles the previously allocated memory block
} Error to free twice
} “Memory leak” when we forget to free

} Usage:
} free(cp);

} No need for cast; void* is compatible with any pointer type

More on malloc and free later in the course!

CS 105, Computer Systems Pomona College

New Topic: X64 Assembly Language

11

} Intel Pentium: 64 bit instruction set

} Evolutionary design, going back to 8086 in 1978
} Basis for original IBM Personal Computer, 16-bits

} Other languages are translated into X64 instructions and
then executed on the CPU
} Actual instructions are sequences of bytes
} We give them mnemonic names

9/10/19

3

CS 105, Computer Systems Pomona College

Assembly/Machine Code View

12

CPU

Programmer-Visible State
} PC: Program counter
} 16 Registers
} Condition codes

PC

Registers

Memory

Code
Data
Stack
Heap

Addresses

Data

Instructions
Condition

Codes

Memory
} Byte addressable array
} Code and user data
} Stack to support

procedures

CS 105, Computer Systems Pomona College

Assembly/Machine Code View

1313

CPU

Repeat forever:
} Fetch instruction at address in PC
} Execute the instruction
} Update PC

PC

Registers

Memory

Code
Data
Stack
Heap

Addresses

Data

Instructions
Condition

Codes

CS 105, Computer Systems Pomona College

14

%rsp

} Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

X86-64 Integer Registers

CS 105, Computer Systems Pomona College

1515

%rsp, stack pointer

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax, function result

%rbx

%rcx, fourth argument

%rdx, third argument

%rsi, second argument

%rdi, first argument

%rbp

X86-64 Register Usage Conventions

Callee-saved registers are in yellow

CS 105, Computer Systems Pomona College

Assembly Characteristics: Data Types

16

} “Integer” data of 1, 2, 4, or 8 bytes
} Data values
} Addresses (untyped pointers)

} Floating point data of 4, 8, or 10 bytes

} Code: Byte sequences encoding series of instructions

} No aggregate types such as arrays or structures
} Just contiguously allocated bytes in memory

CS 105, Computer Systems Pomona College

Assembly Characteristics: Operations

17

} Perform arithmetic function on register or memory data

} Transfer data between memory and register
} Load data from memory into register
} Store register data into memory

} Transfer control
} Unconditional jumps to/from procedures
} Conditional branches

9/10/19

4

CS 105, Computer Systems Pomona College

Compiling into Assembly

18

long plus(long x, long y);

void sumstore(long x, long y,
long *dest) {

long t = plus(x, y);
*dest = t;

}

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain assembly listing (on pom-itb-cs2) with command

gcc –Og –S sum.c

Produces the file sum.s

May get very different results on different machines!

CS 105, Computer Systems Pomona College

Machine Instruction Example
} C Code

} Store value twhere
designated by dest

} Assembly
} Move 8-byte value to memory

} Quad words in x86-64
parlance

} Operands:
t: Register %rax

dest: Register %rbx
*dest: Memory M[%rbx]

} Object Code
} 3-byte instruction
} at address 0x40059e

19

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

CS 105, Computer Systems Pomona College

Disassembling Object Code

20

} Disassembler
$ objdump –d sum
} Useful tool for examining object code
} Analyzes bit pattern of series of instructions
} Produces approximate rendition of assembly code
} Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590 <plus>
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

CS 105, Computer Systems Pomona College

Alternate Disassembly

21

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push %rbx
0x0000000000400596 <+1>: mov %rdx,%rbx
0x0000000000400599 <+4>: callq 0x400590 <plus>
0x000000000040059e <+9>: mov %rax,(%rbx)
0x00000000004005a1 <+12>:pop %rbx
0x00000000004005a2 <+13>:retq

} Using the gdb Debugger
$ gdb sum
(gdb) disassemble sumstore

(gdb) x/14xb sumstore
¨ Examine the 14 bytes starting at sumstore

