
9/5/19

1

CS 105, Computer Systems Pomona College

Data Representation and Memory

September 5, 2019

CS 105, Computer Systems Pomona College

Mentor Sessions

1

} Monday, Wednesday, and Thursday 7-9 pm
} Sunday 3-5 pm

} In Edmunds 105 … or Edmunds 219

CS 105, Computer Systems Pomona College

Today

2

} Data, memory and the C language
} Arrays and pointers
} Casts
} Typedefs
} Structs
} Memory Management

CS 105, Computer Systems Pomona College

The C Language

3

} Syntax like Java: declarations, if, while, return

} Data and execution model are “closer to the
machine”

} More power and flexibility
} More ways to make mistakes
} Sometimes confusing relationships
} Pointers!!

} A possible resource from CMU:
} http://www.cs.cmu.edu/afs/cs/academic/class/15213-

s16/www/recitations/c_boot_camp.pdf

CS 105, Computer Systems Pomona College

Memory

4

} Memory is a (very large) array
of bytes

} The location of a byte is its
virtual address

} Larger words (32- or 64-bit) are
stored in contiguous bytes
} The address of a word is the

address of its first byte
} Successive addresses differ by

word size

CS 105, Computer Systems Pomona College

Word-oriented Memory Organization

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000a
000b
000c
000d
000e
000f
0010
0011

addr=
0000

addr=
0004

addr=
0008

addr=
000b

addr=
0000

addr=
0008

32-bit
words

64-bit
words bytes

• Address is first byte of
word.

• Successive addresses
di↵er by word size.

9

CS 105, Computer Systems Pomona College

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

long long 8 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

5

9/5/19

2

CS 105, Computer Systems Pomona College

Examining Data Representations

6

typedef unsigned char *pointer;

void show_bytes(pointer start, int length) {
int i;
for (i = 0; i < len; i++)

printf(“0x%p\t0x%.2x\n”, start+i, start[i]);
}

int main() {
int a = 15213;
show_bytes ((pointer)&a, sizeof(int));
return 0;

}

Print directives
%p: pointer
%x: hexadecimal

Output

0x7fff5fbffa1c 0x6d
0x7fff5fbffa1d 0x3b
0x7fff5fbffa1e 0x00
0x7fff5fbffa1f 0x00

CS 105, Computer Systems Pomona College

Examining Data: The Full Program

7

#include <stdio.h>

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
size_t i;
for (i = 0; i < len; i++)
printf("%p\t0x%.2x\n", start+i, start[i]);

printf("\n");
}

int main() {
int a = 15213;
printf("int a = 15213;\n");
printf("int a = 0x%.8x;\n",a);
show_bytes((pointer) &a, sizeof(int));
return 0;

}

CS 105, Computer Systems Pomona College

Examining Data: The Result

8

pom-itb-cs2:tmp 16$ gcc -o showbytes showbytes.c

pom-itb-cs2:tmp 17$./showbytes
int a = 15213;
int a = 0x00003b6d;
0x7fff5e1f7b48 0x6d
0x7fff5e1f7b49 0x3b
0x7fff5e1f7b4a 0x00
0x7fff5e1f7b4b 0x00

pom-itb-cs2:tmp 18$

CS 105, Computer Systems Pomona College

Examining Data Representations, continued

9

0x7fff5fbffa1c 0x6d
0x7fff5fbffa1d 0x3b
0x7fff5fbffa1e 0x00
0x7fff5fbffa1f 0x00

a = 15213 = 0x 00 00 3B 6D

x86 processors are little endian, with the least significant byte at the lowest
address.

Some other processors are big endian, with the most significant byte at the lowest
address.

CS 105, Computer Systems Pomona College

Reading “Byte-reversed” listings

10

} A debugger converts binary machine code into assembly
language. Here is a fragment with an embedded constant.

} x86 instructions are between 1 and 15 bytes long. Other
processors have fixed-length instructions

CS 105, Computer Systems Pomona College

Reading Byte-reversed Listings

A debugger converts binary machine code into assembly language.
Here is a fragment with an embedded constant.

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

x86 instructions are between 1 to 15 bytes. Other processors have
fixed-length instructions, often 4 bytes.

13

CS 105, Computer Systems Pomona College

Unsigned and Signed Integers

11

} Use w-bit words; w can be 8, 16, 32, or 64
} The bit sequence bw-1 … b1 b0 represents an integer

} Important!! ”signed” does not mean “negative”

CS 105, Computer Systems Pomona College

Unsigned and Signed Integers

Use w-bit words. w can be 8, 16, 32, or 64.

The bit sequence bw�1 . . . b1b0 represents an integer.

unsigned signed

value
P

w�1
i=0 bi2i �bw�12w�1 +

P
w�2
i=0 bi2i

smallest 0 �2w�1

largest 2w � 1 2w�1 � 1

Important!! “signed” does not mean “negative.”

14

9/5/19

3

CS 105, Computer Systems Pomona College

Example: Three-bit integers

12

CS 105, Computer Systems Pomona College

Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15

CS 105, Computer Systems Pomona College

Arithmetic, Part 1

13

} Usual addition and subtraction
} Like you learned in second grade, only binary
} Same for unsigned and signed
} … but error conditions differ

} To negate a signed value: complement the bits and add 1
Reason:

CS 105, Computer Systems Pomona College

Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.

16

CS 105, Computer Systems Pomona College

Flags

14

} A flag is a one-bit value: 1 is “set” and 0 is “unset”
} Flags record conditions of previous arithmetic operations

} C: The carry-out flag from the last bit; indicates unsigned
overflow

} Z: Set if the result is zero
} N: The sign bit of the result; indicates a negative signed result
} V: Indicates if the result, interpreted as a signed value, is

erroneous. For addition, this means that the signs of the
operands agree and the result has a different sign

CS 105, Computer Systems Pomona College

Arithmetic, Part 2

15

} Comparisons: <, <=, ==, !=, >=, >
} Return “logical values, 0 or 1
} Computation relies on subtraction and flags
} Different for unsigned and signed

} Multiplication
} Product can be two words long; it may be truncated to one word
} Different for unsigned and signed

} Division
} Produces quotient and remainder, one word each
} Different for unsigned and signed
} In x86, the (signed) remainder has the same sign as the numerator

CS 105, Computer Systems Pomona College

Casting Types in C

16

} “Casting” means changing the type of a value

} Sometimes it means “interpret these bits in a different way”
} Unsigned to/from signed

} Other times it means “convert these bits to the same value in
a different representation”

} Shorter integer types to/from longer
} Integer types to/from floating point

sometype x;
othertype y;

x = y; // type error!

x = (sometype) y;

CS 105, Computer Systems Pomona College

Integer Types in C

17

} All integer types (char, short, int, long) can be prefixed
with unsigned

} Constants are, by default, signed. Unsigned constants
have the suffix U

} Casting between unsigned and signed changes the
interpretation, but not the bits

} Implicit casting occurs in assignments and parameter lists.
In mixed expressions, signed values are implicitly cast to
unsigned

} Source of many errors!

9/5/19

4

CS 105, Computer Systems Pomona College

Casting Exercises

Word size = 32 bits

TMIN = -2,147,483,648
TMAX = 2,147,483,647

For each pair, decide whether
<, =, or >

0 0U

-1 0
-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1
-1 -2

(unsigned)-1 -2
2147483647 2147483648U

2147483647 (int)2147483648U

18

CS 105, Computer Systems Pomona College

Integer C Puzzles

1. x < 0 implies (x*2) < 0
2. 0 <= ux

3. x & 7 == 7 implies (x<<30) < 0
4. ux > -1

5. x > y implies -x < -y

6. x * x >= 0
7. x >= 0 implies -x <= 0

8. x <= 0 implies -x >= 0

9. (x|-x)>>31 == -1
10.ux >> 3 == ux/8

11.x >> 3 == x/8
12.x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

19

True or False?

CS 105, Computer Systems Pomona College

Sign Extension

20

} To convert a signed value to a larger number of bits,
simply replicate the sign bit on the left.

CS 105, Computer Systems Pomona College

Sign Extension

5 -5
four bits 0101 1011
eight bits 00000101 11111011

To convert a signed value to a larger number of bits, simply replicate
the sign bit on the left.

Reason: �b2w�1 + other stu↵ = �b2w + b2w�1 + other stu↵

23

CS 105, Computer Systems Pomona College

Sign Extension

5 -5
four bits 0101 1011
eight bits 00000101 11111011

To convert a signed value to a larger number of bits, simply replicate
the sign bit on the left.

Reason: �b2w�1 + other stu↵ = �b2w + b2w�1 + other stu↵

23

CS 105, Computer Systems Pomona College

Multiplying with Shifts

21

CS 105, Computer Systems Pomona College

Shifts, continued

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

• x ⇥ 24 = x ⇥ 32 � x ⇥ 8
= (x << 5) � (x << 3)

Most compilers will generate this code automatically.

25

CS 105, Computer Systems Pomona College

Signed Division by a Power of 2

} x >> k computes x / 2k, rounded towards

} C on Intel processors rounds towards 0
} -11 >> 2 == -3, but -11/4 == -2

} Solution: If x < 0, add 2k-1 before shifting
} Why does this work?

�1

if (x < 0)
x += (1 << k) – 1;

return x >> k;

22

CS 105, Computer Systems Pomona College

When to Use Unsigned

23

} Rarely
} When doing multi-precision arithmetic, or when you need

an extra bit of range … but be careful!

unsigned i;
for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

9/5/19

5

CS 105, Computer Systems Pomona College

Pointer Arithmetic in C

24

} Pointers are, effectively, unsigned integers that signify
addresses in memory

} Suppose p0 and p1 are pointers to type T, and j is an integer

} p0 – p1 is a signed value; it is the number of objects (not bytes!)

between the two addresses

} p0 + p1 and p0 * p1 are disallowed

} p0 + j means p0 + j * sizeof(T)

} &x is the address where x is stored

} Arrays are implemented as pointers.

CS 105, Computer Systems Pomona College

Arrays

25

} Contiguous block of memory
} Pointer to start, then indexed by element size

} Indices start at zero

} ary[k] is the same as *(ary+k)

CS 105, Computer Systems Pomona College

Two-dimensional Arrays

26

} Same storage layout:
int a[48]; // 48 integers
int b[6][8]; // 6 rows, 8 columns

} “row major order”

} b[i][j] is the same as b[8*i+j]

CS 105, Computer Systems Pomona College

Typedefs

27

} Abbreviation for complex types

int b[6][8]; // b is a two-dim array

typedef int b_type[6][8];

b_type b_var; // b_var is a two-dim array

CS 105, Computer Systems Pomona College

int *p[47];

} Array of pointers … or … pointer to an array??

} It’s an array of 47 pointers
} p[3] is the fourth pointer in the array p
} p[3] is the base of an array
} p[3][6] is the integer at position 6 in the array p[3]

} Danger! p[3][6] looks the same as a[3][6]

28

Arrays and Pointers Combined

CS 105, Computer Systems Pomona College

What is printed?

29

int a[100];
int *p[47];

p[3] = a+12;
for (int i = 0; i < 100; i++)

a[i] = i;

printf(“%d\n”, p[3][4]);

9/5/19

6

CS 105, Computer Systems Pomona College

Structs

30

} Hetrogeneous records
} Example:

} Usage:

} Usage with pointers:

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

How many bytes are
allocated for c?
for p?

CS 105, Computer Systems Pomona College

Summary: Data in C

31

} Arrays and pointers
} Casts (explicit and implicit)
} Typedefs
} Structs

