

05, Comj	outer Systems			1	Pomona Col
Exam	ple Data Re	epresenta	ations		
	C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
	char	1	1	1	
	short	2	2	2	
	int	4	4	4	
	long	4	8	8	
	long long	8	8	8	
	float	4	4	4	
	double	8	8	8	
	pointer	4	8	8	

1

105, Computer Systems	Pomona Co
Examining Data Repres	entations
typedef unsigned char *pointer;	
<pre>void show_bytes(pointer start, int i;</pre>	int length) {
<pre>for (i = 0; i < len; i++) printf(``0x%p\t0x%.2x\n", }</pre>	<pre>start+i, start[i]);</pre>
<pre>int main() { int a = 15213; show_bytes ((pointer)&a, siz return 0; }</pre>	<pre>zeof(int));</pre>
,	Output
Print directives %p: pointer	0x7fff5fbffalc 0x6d 0x7fff5fbffald 0x3b
%x: hexadecimal	

S 105, Computer Systems Pom	ona College
Examining Data: The Result	
pom-itb-cs2:tmp 16\$ gcc -o showbytes showbytes.c	
pom-itb-cs2:tmp 17\$./showbytes	
int a = 15213;	
int a = 0x00003b6d;	
0x7fff5e1f7b48 0x6d	
0x7fff5e1f7b49 0x3b	
0x7fff5e1f7b4a 0x00	
0x7fff5e1f7b4b 0x00	
pom-itb-cs2:tmp 18\$	
8	

Pomona College

гхаптрі	e. i	mee-b	it integers
unsigned		signed	
111	7	-	 The high-order bit is the sign bit.
110	6		 The largest unsigned value is
101	5		111, UMax.
100	4		 The signed value for -1 is always
011	3	011	111.
010	2	010	
001	1	001	 Signed values range between TMin
000	0	000	and TMax.
	-1	111	
	-2	110	This representation of signed values is
	-3	101	called two's complement.
	-4	100	

Flags	Arithmetic, Part 2
 A flag is a one-bit value: 1 is "set" and 0 is "unset" Flags record conditions of previous arithmetic operations 	 Comparisons: <, <=, ==, !=, >=, Return "logical values, 0 or 1 Computation relies on subtraction Different for unsigned and signed
 C: The carry-out flag from the last bit; indicates unsigned overflow Z: Set if the result is zero 	 Multiplication Product can be two words long; it is Different for unsigned and signed
 N: The sign bit of the result; indicates a negative signed result V: Indicates if the result, interpreted as a signed value, is erroneous. For addition, this means that the signs of the operands agree and the result has a different sign 	 Division Produces quotient and remainder, Different for unsigned and signed In x86, the (signed) remainder has

- :, >
 - on and flags

 - may be truncated to one word

 - r, one word each
 - as the same sign as the numerator

S 105, Computer Systems	Pomona College
Integer Types in C	
 All integer types (char, short, int, long) can be pre with unsigned 	fixed
 Constants are, by default, signed. Unsigned const have the suffix U 	ants
 Casting between unsigned and signed changes th interpretation, but not the bits 	e
 Implicit casting occurs in assignments and param In mixed expressions, signed values are implicitly unsigned 	
Source of many errors!	
17	

CS 105, Computer Systems		Pomona Colleg
Casting Exercises		
	0	00
Word size = 32 bits	-1	0
	-1	0U
TMIN = -2,147,483,648	2147483647	-2147483647-1
TMAX = 2,147,483,647	2147483647U	-2147483647-1
110/27 - 2,147,405,047	-1	-2
For each pair, decide whether	(unsigned)-1	-2
<, =, or >	2147483647	2147483648U
	2147483647	(int)2147483648U

Integer C Puzz	les True or Fals	se?
nt x = foo();	1. $x < 0$ implies ($x + 2$) <	0
<pre>nt y = bar();</pre>	2. 0 <= ux	
nsigned $ux = x;$	3. x & 7 == 7 implies (x<<	:30) < 0
nsigned uy = y;	4. $ux > -1$	
	5. x > y implies -x < -y	
	6. x * x >= 0	
	7. $\mathbf{x} \ge 0$ implies $-\mathbf{x} \le$	0
	8. x <= 0 implies -x >=	0
	9. $(x -x) >> 31 == -1$	
	10.ux >> 3 == ux/8	
	11.x >> 3 == x/8	
	12.x & (x-1) != 0	

hat is p	rinted?	
		_
	t a[100];	
in	t *p[47];	
p[3] = a+12;	
fo	r (int i = 0; i < 100; i++)	
	a[i] = i;	
pr	intf("%d\n", p[3][4]);	
		-

