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Mentor Sessions
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} Monday, Wednesday, and Thursday 7-9 pm
} Sunday 3-5 pm

} In Edmunds 105 … or Edmunds 219

CS 105, Computer Systems Pomona College

Today
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} Data, memory and the C language
} Arrays and pointers
} Casts
} Typedefs
} Structs
} Memory Management
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The C Language
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} Syntax like Java:  declarations,  if, while, return

} Data and execution model are “closer to the 
machine”

} More power and flexibility
} More ways to make mistakes
} Sometimes confusing relationships
} Pointers!!

} A possible resource from CMU:
} http://www.cs.cmu.edu/afs/cs/academic/class/15213-

s16/www/recitations/c_boot_camp.pdf
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Memory
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} Memory is a (very large) array 
of bytes

} The location of a byte is its 
virtual address

} Larger words (32- or 64-bit) are 
stored in contiguous bytes
} The address of a word is the 

address of its first byte
} Successive addresses differ by 

word size
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Word-oriented Memory Organization

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000a
000b
000c
000d
000e
000f
0010
0011

addr=
0000

addr=
0004

addr=
0008

addr=
000b

addr=
0000

addr=
0008

32-bit
words

64-bit
words bytes

• Address is first byte of
word.

• Successive addresses
di↵er by word size.
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

long long 8 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8
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Examining Data Representations
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typedef unsigned char *pointer;

void show_bytes(pointer start, int length) {
int i;
for (i = 0; i < len; i++)

printf(“0x%p\t0x%.2x\n”, start+i, start[i]);
}

int main() {
int a = 15213;
show_bytes ((pointer)&a, sizeof(int));
return 0;

}   

Print directives
%p: pointer
%x: hexadecimal

Output

0x7fff5fbffa1c 0x6d 
0x7fff5fbffa1d 0x3b 
0x7fff5fbffa1e 0x00 
0x7fff5fbffa1f 0x00 
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Examining Data: The Full Program
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#include <stdio.h>

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len) {
size_t i;
for (i = 0; i < len; i++)
printf("%p\t0x%.2x\n", start+i, start[i]);

printf("\n");
}

int main() {
int a = 15213;
printf("int a = 15213;\n");
printf("int a = 0x%.8x;\n",a);
show_bytes((pointer) &a, sizeof(int));
return 0;

}
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Examining Data: The Result
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pom-itb-cs2:tmp 16$ gcc -o showbytes showbytes.c

pom-itb-cs2:tmp 17$ ./showbytes
int a = 15213;
int a = 0x00003b6d;
0x7fff5e1f7b48 0x6d
0x7fff5e1f7b49 0x3b
0x7fff5e1f7b4a 0x00
0x7fff5e1f7b4b 0x00

pom-itb-cs2:tmp 18$ 
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Examining Data Representations, continued
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0x7fff5fbffa1c 0x6d 
0x7fff5fbffa1d 0x3b 
0x7fff5fbffa1e 0x00 
0x7fff5fbffa1f 0x00 

a = 15213 = 0x 00 00 3B 6D 

x86 processors are little endian, with the least significant byte at the lowest 
address. 

Some other processors are big endian, with the most significant byte at the lowest 
address. 
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Reading “Byte-reversed” listings
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} A debugger converts binary machine code into assembly 
language. Here is a fragment with an embedded constant.

} x86 instructions are between 1 and 15 bytes long. Other 
processors have fixed-length instructions
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Reading Byte-reversed Listings

A debugger converts binary machine code into assembly language.
Here is a fragment with an embedded constant.

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

x86 instructions are between 1 to 15 bytes. Other processors have
fixed-length instructions, often 4 bytes.
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Unsigned and Signed Integers
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} Use w-bit words;  w can be 8, 16, 32, or 64
} The bit sequence  bw-1 … b1 b0 represents an integer

} Important!! ”signed” does not mean “negative” 
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Unsigned and Signed Integers

Use w-bit words. w can be 8, 16, 32, or 64.

The bit sequence bw�1 . . . b1b0 represents an integer.

unsigned signed

value
P

w�1
i=0 bi2i �bw�12w�1 +

P
w�2
i=0 bi2i

smallest 0 �2w�1

largest 2w � 1 2w�1 � 1

Important!! “signed” does not mean “negative.”
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Example: Three-bit integers
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Example: Three-bit integers

unsigned signed
111 7
110 6
101 5
100 4
011 3 011
010 2 010
001 1 001
000 0 000

�1 111
�2 110
�3 101
�4 100

• The high-order bit is the sign bit.

• The largest unsigned value is
11 . . . 1, UMax.

• The signed value for �1 is always
11 . . . 1.

• Signed values range between TMin
and TMax.

This representation of signed values is
called two’s complement.

15
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Arithmetic, Part 1
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} Usual addition and subtraction
} Like you learned in second grade, only binary
} Same for unsigned and signed
} … but error conditions differ

} To negate a signed value: complement the bits and add 1
Reason:
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Arithmetic, Part 1

Use usual addition and subtraction.

• like you learned in second grade, only binary

• same for unsigned and signed

• but error conditions di↵er

To negate a signed value: complement the bits and add 1.

• Reason: x + ⇠ x = 11 . . . 1 = �1, so x + (⇠ x + 1) = 0.
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Flags
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} A flag is a one-bit value: 1 is “set” and 0 is “unset”
} Flags record conditions of previous arithmetic operations

} C: The carry-out flag from the last bit; indicates unsigned 
overflow

} Z: Set if the result is zero
} N: The sign bit of the result; indicates a negative signed result
} V: Indicates if the result, interpreted as a signed value, is 

erroneous. For addition, this means that the signs of the 
operands agree and the result has a different sign
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Arithmetic, Part 2
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} Comparisons: <, <=, ==, !=, >=, >
} Return “logical values, 0 or 1
} Computation relies on subtraction and flags
} Different for unsigned and signed

} Multiplication
} Product can be two words long; it may be truncated to one word
} Different for unsigned and signed

} Division
} Produces quotient and remainder, one word each
} Different for unsigned and signed
} In x86, the (signed) remainder has the same sign as the numerator
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Casting Types in C
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} “Casting” means changing the type of a value

} Sometimes it means “interpret these bits in a different way”
} Unsigned to/from signed

} Other times it means “convert these bits to the same value in 
a different representation”

} Shorter integer types to/from longer
} Integer types to/from floating point

sometype x;
othertype y;

x = y;     // type error!

x = (sometype) y;
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Integer Types in C
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} All integer types (char, short, int, long) can be prefixed 
with unsigned

} Constants are, by default, signed. Unsigned constants 
have the suffix U

} Casting between unsigned and signed changes the 
interpretation, but not the bits

} Implicit casting occurs in assignments and parameter lists. 
In mixed expressions, signed values are implicitly cast to 
unsigned

} Source of many errors!
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Casting Exercises

Word size = 32 bits

TMIN =  -2,147,483,648
TMAX = 2,147,483,647

For each pair, decide whether 
<, =, or >

0             0U

-1            0
-1            0U

2147483647    -2147483647-1

2147483647U   -2147483647-1
-1            -2

(unsigned)-1  -2
2147483647    2147483648U

2147483647    (int)2147483648U
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Integer C Puzzles

1. x < 0  implies (x*2) < 0
2. 0 <= ux

3. x & 7 == 7 implies  (x<<30) < 0
4. ux > -1

5. x > y  implies -x < -y

6. x * x >= 0
7. x >= 0  implies -x <= 0

8. x <= 0  implies -x >= 0

9. (x|-x)>>31 == -1
10.ux >> 3 == ux/8

11.x >> 3 == x/8
12.x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;
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True or False?
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Sign Extension
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} To convert a signed value to a larger number of bits, 
simply replicate the sign bit on the left. 
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Sign Extension

5 -5
four bits 0101 1011
eight bits 00000101 11111011

To convert a signed value to a larger number of bits, simply replicate
the sign bit on the left.

Reason: �b2w�1 + other stu↵ = �b2w + b2w�1 + other stu↵

23
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Sign Extension

5 -5
four bits 0101 1011
eight bits 00000101 11111011

To convert a signed value to a larger number of bits, simply replicate
the sign bit on the left.

Reason: �b2w�1 + other stu↵ = �b2w + b2w�1 + other stu↵
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Multiplying with Shifts
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Shifts, continued

C uses << and >>. The arithmetic/logical choice is made according the
the operands being signed/unsigned.

Java has no unsigned integers, but it has a third shift >>> for logical
right shift.

We can multiply (often faster than with the processor’s multiply
instruction) with shifts.

• x ⇥ 24 = x ⇥ 32 � x ⇥ 8
= (x << 5) � (x << 3)

Most compilers will generate this code automatically.
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Signed Division by a Power of 2

} x >> k computes x / 2k, rounded towards 

} C on Intel processors rounds towards 0
} -11 >> 2 == -3,   but   -11/4 == -2

} Solution: If x < 0, add 2k-1 before shifting
} Why does this work?

�1

if (x < 0)
x += (1 << k) – 1;

return x >> k;

22
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When to Use Unsigned
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} Rarely
} When doing multi-precision arithmetic, or when you need 

an extra bit of range … but be careful!

unsigned i; 
for (i = cnt-2; i >= 0; i--) 

a[i] += a[i+1]; 
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Pointer Arithmetic in C
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} Pointers are, effectively, unsigned integers that signify 
addresses in memory

} Suppose p0 and p1 are pointers to type T, and j is an integer

} p0 – p1 is a signed value; it is the number of objects (not bytes!) 

between the two addresses

} p0 + p1 and p0 * p1 are disallowed

} p0 + j means p0 + j * sizeof(T)

} &x is the address where x is stored

} Arrays are implemented as pointers.
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Arrays
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} Contiguous block of memory
} Pointer to start, then indexed by element size

} Indices start at zero

} ary[k] is the same as *(ary+k)
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Two-dimensional Arrays
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} Same storage layout:
int a[48];      // 48 integers
int b[6][8];    // 6 rows, 8 columns

} “row major order”

} b[i][j] is the same as b[8*i+j]
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Typedefs
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} Abbreviation for complex types

int b[6][8]; // b is a two-dim array

typedef int b_type[6][8];

b_type b_var; // b_var is a two-dim array
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int *p[47];

} Array of pointers … or … pointer to an array??

} It’s an array of 47 pointers
} p[3] is the fourth pointer in the array p
} p[3] is the base of an array
} p[3][6] is the integer at position 6 in the array p[3]

} Danger! p[3][6] looks the same as  a[3][6]
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Arrays and Pointers Combined
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What is printed?
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int a[100];
int *p[47];

p[3] = a+12;
for (int i = 0; i < 100; i++)

a[i] = i;

printf(“%d\n”, p[3][4]);
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Structs
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} Hetrogeneous records
} Example:

} Usage:

} Usage with pointers:

typedef struct cell {
int value;
struct cell *next;

} cell_t;

cell_t c;
c.value = 42;
c.next = NULL;

cell_t *p;
p->value = 42;
p->next = NULL;

How many bytes  are
allocated for c?
for p?
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Summary: Data in C
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} Arrays and pointers
} Casts (explicit and implicit)
} Typedefs
} Structs


