

Computer Systems
Study low-level properties, but programmer-centric

We do not

- Design processors
- Implement operating systems
- Write compilers
- Simulate networks

Instead we

- Look at consequences for the programmer of existing designs
- See how processors, operating systems, compilers, and networks work together

CS 105, Computer Systems
Pomona College

Prerequisites and Assumptions

- Proficiency with:

- Representing numbers in different bases
- Writing reasonably complex programs in Java/C/C++
- Data structures such as: linked lists, arrays, stacks, trees
- Debugging
- Experience with:
- Terminal window and command line
- Learning new languages and applications
- Experimenting and being confused
- Searching for and reading documentation

The Course in a Nutshell

- Textbooks
- Required:
+ Bryant and O'Halloran, Computer Systems: A Programmer's
Perspective, third edition, Pearson, 2016 or electronic equivalent
Avoid paperback editions and pdf's on the web!
- Optional: some reference for the C language

Kernighan and Ritchie, The C Programming Language, second edition, Prentice Hall, 1988
Miller and Quilici, The Joy of C, third edition, Wiley, 1997
, Be cautious about web resources!
, Classes

- Come prepared-do the reading first!

3

Nutshell, continued

Resources

, http://www.cs.pomona.edu/classes/cs105

- 5% of the grad
, Labs
- Tremendous fun, work in pairs
- 40% of the grade
- Start tomorrow! Be sure to have an accounts and passwords
- Midterm exams
- October 3 and November 7
- 15% of the grade each
- Links from the course page:
- Piazza, for questions and discussion
- Lab assistants and mentors, schedule
- Submission site
- Final exam
- Tuesday, December 17, 2:00-5:00 pm
- 25% of the grade
- Sakai, for recording lab grades only
(Real) Computer Systems
- Labs use two different systems, in combination
- Two userids and two passwords
- Pomona College Computer Science system
- CAS ID (ITS, email)
- Be ready tomorrow with both passwords!

Five Great Realities from the textbook

1. ints are not integers; floats are not real numbers
2. You must know assembly
3. Memory matters
4. There is more to performance than asymptotic complexity
5. Computers do more than execute programs

We try to balance theory and practice!

CS 105, Computer Systems	Pomona College		
Bits and Bytes	Hex	Decimal	Binary
	0	0	0000
- Bits $=0$ or 1	1	1	0001
	2	2	0010
	3	3	0011
- Byte $=8$ bits	4	4	0100
- Binary 000000002 to 111111112	5	5	0101
	6	6	0110
- Decimal: 010 to 25510	7	7	0111
- Hexadecimal 00_{16} to FF_{16}	8	8	1000
- Base 16 number representation , Use characters ' 0 ' to ' 9 ' and ' A ' to ' F '	9	9	1001
	A	10	1010
, Write FA1D37B16 in C as	в	11	1011
$\square 0 \times \mathrm{FA1D37B}$	c	12	1100
$\square 0 x f a 1 d 37 \mathrm{~b}$	D	13	1101
	E	14	1110
	F	15	1111
10			

CS 105, Computer Systems
Pomona College

Bits

- 0 or 1

- Sequences of bits represent
- numbers
- text
- images
- sound
instructions
,
9

CS 105, Computer Systems				Pomona College
Example Data Representations				
C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
long long	8	8	8	
float	4	4	4	
double	8	8	8	
pointer	4	8	8	
Sizes in bytes				
11				

Bits and Bytes Require Interpretation
$0 x 00353031$, or 00000000001101010011000000110001 ,

Memory: An Array of Bytes

- An index into the array is an address, location, or pointer
- Often expressed in hexadecimal
- We speak of the value in memory at an address
- The value may be a single byte ...
- ... or a multi-byte quantity starting at that address
- Assignment: $\quad \mathbf{x}=\mathbf{y}+42$;
- Take the value from the location reserved for \mathbf{y}
- Add 42 to it
- Place the result in the location reserved for \mathbf{x}
\qquad

Pointers as Addresses

- A pointer is an address in memory

int $x ;$	// an integer
int *p	// a pointer to an integer

- 4 bytes are reserved for \mathbf{x}
- 8 bytes are reserved for \mathbf{p}
- Those 8 bytes are interpreted as an address of an integer (somewhere else) in memory
- \& and * are inverses of one another
- prefix vs infix operators
- x occupies 4 bytes in memory; p occupies 8

```
int x; // an integer
// normal initialization:
x = 0;
// silly, but illustrative:
p = &x; // & means "address of"
*p = 0; // * means "memory at address"
```

```
int *p // a pointer to an integer
```

```
int *p // a pointer to an integer
```

CS 105, Computer Systems Pomona College

Memory Access in C

Boolean Algebra

- Developed by George Boole in 19th Century
- Algebraic representation of logic---encode "True" as 1 and "False" as 0

$$
\begin{aligned}
& \text { And } \begin{array}{c|cc}
\& & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array} \\
& \text { Or } \quad \begin{array}{l|ll}
\mathrm{I} & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 1
\end{array} \\
& \text { Not } \begin{array}{c|c}
\sim & \\
\hline 0 & 1 \\
1 & 0
\end{array} \\
& \begin{array}{lc|cc}
\text { Exclusive-Or (Xor) } & \wedge & 0 & 1 \\
\cline { 2 - 4 } & 0 & 0 & 1 \\
& 1 & 1 & 0
\end{array}
\end{aligned}
$$

General Boolean algebras

- Bitwise operations on words

01101001	01101001	01101001	
\& 01010101	- 01010101	^ 01010101	~ 01010101
1000001	01111101	001	10101010

- How does this map to set operations?
$\overline{17}$

Bitwise vs Logical Operations in C

- Apply to any "integral" data type
- long, int, short, char, unsigned
- Bitwise Operators \& I, ~, ^
- View arguments as bit vectors
- operations applied bit-wise in parallel
- Logical Operators
$\& \&,| |$,
- View 0 as "False"
- View anything nonzero as "True"
- Always return 0 or 1
- Early termination

CS 105, Computer Systems
Powers of Two
$2^{6}=64$
$>2^{8}=256$
$>2^{10}=1024 \approx 1000$, K or kilo
$>2^{20} \approx 10^{6}, \mathrm{M}$ or mega College
$>2^{30} \approx 10^{9}, \mathrm{G}$ or giga
$>2^{40} \approx 10^{12}$, tera
$>2^{50} \approx 10^{15}$, peta
$\frac{20}{20}$

CS 105, Computer Systems		Pomona College
Representations		
, 15213 as a 32-bit, 4-byte number		
- Decimal:	15213_{10}	
- Binary:	$15213_{10}=0011101101101101_{2}$	
- Hexadecimal:	$15213_{10}=0 \times 3 B 6 D$	
21		

Representing Numbers

- Practice:
- what is 10547_{10} in binary?
- what is 8.75_{10} in binary?

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

22

CS 105, Computer Systems Pomona College

Representations

15213 as a 32-bit, 4-byte number
p Decimal: 15213_{10}

Binary: $\quad 15213_{10}=0011101101101101_{2}$

Exercises (char data type, one byte)
~0x41

- ~0x00

0x69 \& 0x55
0x69 | 0x55

- !0x41
- !0x00
!!0x41
0x69 \&\& 0x55
0x69 ।। 0x55

C Data Type	Typical 32-bit	Typical 64-bit	$\times 86$-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Bitwise vs Logical Operations in C
\qquad

Representing Unsigned Integers

- Think of bits as the binary representation

$$
\operatorname{UnsignedValue}(x)=\sum_{j=0}^{w-1} x_{j} \cdot 2^{j}
$$

- Can only represent non-negative numbers

If you have w bits, what is the range?

Representing Signed Numbers

Representing Signed Integers

- Option 1: sign-magnitude
- One bit for sign; interpret rest as magnitude
- Option 2: one’s complement
- Flip every bit to get the negation
- Option 3: excess-K
- Choose a positive K in the middle of the unsigned range
- SignedValue(w) = UnsignedValue (w) - K
- Used in floating point representations

Difficulties?

- Option 4: two's complement
- Most commonly used
- Like unsigned, except the high-order contribution is negative

$$
\operatorname{SignedValue}(x)=-x_{w-1} \cdot 2^{w-1}+\sum_{j=0}^{w-2} x_{j} \cdot 2^{j}
$$

- Assume C short (2 bytes)
- What is the hex/binary representation for 47 ?
- What is the hex/binary representation for -47?
\qquad

Two's Complement Signed Integers

- "Signed" does not mean "negative"
- High order bit is the sign bit
- To negate, complement all the bits and add 1
- Remember the arithmetic right shift
- Sign extension
- Arithmetic is the same as unsigned-same circuitry
- Error conditions and comparisons are different
\qquad
26 \qquad \square

Fun with Integers: Using of Bitwise Operations

$>x \& 1$	"x is odd"
$>(x+7) \& 0 x F F F F F F F 8$	"round up to a multiple of $8 "$

- p \& ~0x3FF "start of 1 K block containing p" (almost)
- ((p>>10) <<10) same location (really)
p p \& 0x3FF "offset of p within the block"

27

Fun with Integers: Shift Operations in C

Tomorrow: Data Lab Puzzles

Left Shift: $\quad \mathbf{x} \ll \mathbf{y}$

- Shift bit-vector \mathbf{x} left \mathbf{y} positions , Multiply integer by a power of 2

Throw away extra bits on left
Fill with o's on right
, Right Shift: \mathbf{x} >> \mathbf{y}

- Shift bit-vector \mathbf{x} right \mathbf{y} positions
- Divide by a power of 2

Throw away extra bits on right

- Logical shift

Fill with o's on left

- Arithmetic shift

Replicate most significant bit on left $\quad \begin{aligned} & \text { arithmetic depends on the type of } \\ & \text { data }\end{aligned}$

- Undefined Behavior
- Shift amount <0 or \geq word size

Typical example. Find an expression to replace ???

Things to Do Right Away

- For lab tomorrow
- Be sure you have an accounts and passwords on both the Pomona CS system and the CAS ID from ITS
- For class on Thursday
- Begin the reading: Chapters 1 and 2
- This week
- Accept the invitation to our course's Piazza site
- Enroll in CS 105 on submit.cs.pomona.edu

