
CS 105, Computer Systems Pomona College

Introduction, Bits

September 3, 2018

CS 105, Computer Systems Pomona College

Computer Systems

We do not
} Design processors
} Implement operating

systems
} Write compilers
} Simulate networks

Instead we
} Look at consequences for

the programmer of existing
designs

} See how processors,
operating systems,
compilers, and networks
work together

Study low-level properties, but programmer-centric

1

CS 105, Computer Systems Pomona College

Prerequisites and Assumptions

} Proficiency with:
} Representing numbers in different bases
} Writing reasonably complex programs in Java/C/C++
} Data structures such as: linked lists, arrays, stacks, trees
} Debugging

} Experience with:
} Terminal window and command line
} Learning new languages and applications
} Experimenting and being confused
} Searching for and reading documentation

2

CS 105, Computer Systems Pomona College

The Course in a Nutshell

} Textbooks
} Required:

} Bryant and O’Halloran, Computer Systems: A Programmer’s
Perspective, third edition, Pearson, 2016 or electronic equivalent

} Avoid paperback editions and pdf’s on the web!

} Optional: some reference for the C language
} Kernighan and Ritchie, The C Programming Language, second edition,

Prentice Hall, 1988
} Miller and Quilici, The Joy of C, third edition, Wiley, 1997

} Be cautious about web resources!

} Classes
} Come prepared—do the reading first!

3

CS 105, Computer Systems Pomona College

Nutshell, continued

} Participation
} 5% of the grade

} Labs
} Tremendous fun, work in pairs
} 40% of the grade
} Start tomorrow! Be sure to have an accounts and passwords

} Midterm exams
} October 3 and November 7
} 15% of the grade each

} Final exam
} Tuesday, December 17, 2:00—5:00 pm
} 25% of the grade

4

CS 105, Computer Systems Pomona College

Resources

} http://www.cs.pomona.edu/classes/cs105

} Links from the course page:

} Piazza, for questions and discussion

} Lab assistants and mentors, schedule

} Submission site

} Sakai, for recording lab grades only

5

CS 105, Computer Systems Pomona College

(Real) Computer Systems

6

} Labs use two different systems, in combination

} Two userids and two passwords
} Pomona College Computer Science system
} CAS ID (ITS, email)

} Be ready tomorrow with both passwords!

CS 105, Computer Systems Pomona College

Numbers Every Programmer Should Know

7

execute typical instruction 1/1,000,000,000 sec = 1 nanosec

fetch from L1 cache memory 0.5 nanosec

branch misprediction 5 nanosec

fetch from L2 cache memory 7 nanosec

Mutex lock/unlock 25 nanosec

fetch from main memory 100 nanosec

send 2K bytes over 1Gbps network 20,000 nanosec

read 1MB sequentially from memory 250,000 nanosec

fetch from new disk location (seek) 8,000,000 nanosec

read 1MB sequentially from disk 20,000,000 nanosec

send packet US to Europe and back 150 milliseconds = 150,000,000 nanosec

These will make more sense later.

From Peter Norvig, Teach Yourself Programming in Ten Years. Made even more famous by
Google’s Jeff Dean.

CS 105, Computer Systems Pomona College

Five Great Realities from the textbook

1. ints are not integers; floats are not real numbers

2. You must know assembly

3. Memory matters

4. There is more to performance than asymptotic
complexity

5. Computers do more than execute programs

We try to balance theory and practice!

8

CS 105, Computer Systems Pomona College

Bits

} 0 or 1

} Sequences of bits represent
} numbers
} text
} images
} sound
} instructions
}

0.0V
0.2V

0.9V
1.1V

0 1 0

9

CS 105, Computer Systems Pomona College

Bits and Bytes

} Bits = 0 or 1

} Byte = 8 bits
} Binary 000000002 to 111111112

} Decimal: 010 to 25510

} Hexadecimal 0016 to FF16

} Base 16 number representation
} Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
} Write FA1D37B16 in C as

¨ 0xFA1D37B
¨ 0xfa1d37b

Hex Decimal Binary
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
10

CS 105, Computer Systems Pomona College

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

long long 8 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

11

Sizes in bytes

CS 105, Computer Systems Pomona College

Bits and Bytes Require Interpretation

12

0x00353031, or 00000000 00110101 00110000 00110001,
might be interpreted as

} The integer 3,485,74510

} A floating point number close to 4.884569 x 10-39

} The string “105”
} A portion of an image or video
} An address in memory

CS 105, Computer Systems Pomona College

Memory: An Array of Bytes

13

} An index into the array is an address, location, or pointer
} Often expressed in hexadecimal

} We speak of the value in memory at an address
} The value may be a single byte …
} … or a multi-byte quantity starting at that address

} Assignment: x = y + 42;
} Take the value from the location reserved for y
} Add 42 to it
} Place the result in the location reserved for x

CS 105, Computer Systems Pomona College

Pointers as Addresses

14

} A pointer is an address in memory

} 4 bytes are reserved for x
} 8 bytes are reserved for p

} Those 8 bytes are interpreted as an address of an integer
(somewhere else) in memory

int x; // an integer
int *p // a pointer to an integer

CS 105, Computer Systems Pomona College

Memory Access in C

15

int x; // an integer
int *p // a pointer to an integer

// normal initialization:
x = 0;

// silly, but illustrative:
p = &x; // & means “address of”
*p = 0; // * means “memory at address”

• & and * are inverses of one another
• prefix vs infix operators
• x occupies 4 bytes in memory; p occupies 8

CS 105, Computer Systems Pomona College

Boolean Algebra
} Developed by George Boole in 19th Century
} Algebraic representation of logic---encode “True” as 1

and “False” as 0

And Or

Not Exclusive-Or (Xor)

16

CS 105, Computer Systems Pomona College

General Boolean algebras

} Bitwise operations on words

} How does this map to set operations?

01101001
& 01010101

01000001

01101001
| 01010101

01111101

01101001
^ 01010101

00111100
~ 01010101

1010101001000001 01111101 00111100 10101010

17

CS 105, Computer Systems Pomona College

Bitwise vs Logical Operations in C

} Apply to any “integral” data type
} long, int, short, char, unsigned

} Bitwise Operators &, |, ~, ^
} View arguments as bit vectors
} operations applied bit-wise in parallel

} Logical Operators &&, ||, !
} View 0 as “False”
} View anything nonzero as “True”
} Always return 0 or 1
} Early termination

18

CS 105, Computer Systems Pomona College

Bitwise vs Logical Operations in C

} Exercises (char data type, one byte)
} ~0x41
} ~0x00

} 0x69 & 0x55
} 0x69 | 0x55

} !0x41
} !0x00
} !!0x41

} 0x69 && 0x55
} 0x69 || 0x55

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

19

CS 105, Computer Systems Pomona College

Powers of Two

} 26 = 64
} 28 = 256

} 210 = 1024 ≈ 1000, K or kilo
} 220 ≈ 106, M or mega
} 230 ≈ 109, G or giga
} 240 ≈ 1012, tera
} 250 ≈ 1015, peta

20

Memorize these!

CS 105, Computer Systems Pomona College

Representations

21

} 15213 as a 32-bit, 4-byte number

} Decimal: 1521310

} Binary: 1521310 = 0011 1011 0110 11012

} Hexadecimal: 1521310 = 0x3B6D

CS 105, Computer Systems Pomona College

Representing Numbers

} Practice:
} what is 1054710 in binary?
} what is 8.7510 in binary?

C Data Type Typical 32-bit Typical 64-bit x86-64
char 1 1 1
short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

22

CS 105, Computer Systems Pomona College

Representing Unsigned Integers

} Think of bits as the binary representation

} Can only represent non-negative numbers

} If you have w bits, what is the range?

UnsignedValue.x/ D
w�1X

j D0

xj � 2j

23

CS 105, Computer Systems Pomona College

Representing Signed Numbers

} Option 1: sign-magnitude
} One bit for sign; interpret rest as magnitude

} Option 2: one’s complement
} Flip every bit to get the negation

} Option 3: excess-K
} Choose a positive K in the middle of the unsigned range
} SignedValue(w) = UnsignedValue(w) – K
} Used in floating point representations

} Difficulties?
24

CS 105, Computer Systems Pomona College

Representing Signed Integers

} Option 4: two’s complement
} Most commonly used
} Like unsigned, except the high-order contribution is negative

} Assume C short (2 bytes)
} What is the hex/binary representation for 47?
} What is the hex/binary representation for -47?

SignedValue.x/ D �xw�1 � 2w�1 C
w�2X

j D0

xj � 2j

25

CS 105, Computer Systems Pomona College

Two’s Complement Signed Integers

} “Signed” does not mean “negative”

} High order bit is the sign bit
} To negate, complement all the bits and add 1
} Remember the arithmetic right shift
} Sign extension

} Arithmetic is the same as unsigned—same circuitry

} Error conditions and comparisons are different

26

CS 105, Computer Systems Pomona College

Fun with Integers: Using of Bitwise Operations

27

} x & 1 “x is odd”
} (x + 7) & 0xFFFFFFF8 “round up to a multiple of 8”

} p & ~0x3FF “start of 1K block containing p” (almost)
} ((p >> 10) << 10) same location (really)

} p & 0x3FF “offset of p within the block”

CS 105, Computer Systems Pomona College

Fun with Integers: Shift Operations in C

} Left Shift: x << y
} Shift bit-vector x left y positions

} Throw away extra bits on left
} Fill with 0’s on right

} Right Shift: x >> y
} Shift bit-vector x right y positions

} Throw away extra bits on right
} Logical shift

} Fill with 0’s on left
} Arithmetic shift

} Replicate most significant bit on left

} Undefined Behavior
} Shift amount < 0 or ≥ word size

} Multiply integer by a power of 2

} Divide by a power of 2
} Rounds toward -∞

} Choice between logical and
arithmetic depends on the type of
data

28

CS 105, Computer Systems Pomona College

Tomorrow: Data Lab Puzzles

29

/*
* upperBits - pads n upper bits with 1's
* You may assume 0 <= n <= 32
* Example: upperBits(4) = 0xF0000000
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 10
* Rating: 1
*/
int upperBits(int n) {

return ??? ;

}

Typical example. Find an expression to replace ???.

CS 105, Computer Systems Pomona College

Things to Do Right Away

30

} For lab tomorrow
} Be sure you have an accounts and passwords on both the

Pomona CS system and the CAS ID from ITS

} For class on Thursday
} Begin the reading: Chapters 1 and 2

} This week
} Accept the invitation to our course’s Piazza site
} Enroll in CS 105 on submit.cs.pomona.edu

