
Process Laboratory

CS 105, Fall 2019

Due on Tuesday, September 24, 2019, at 11:59 PM

The exercises in this laboratory are designed to introduce you to the idea of processes—what they are, how
they are expressed in the C language, how they use memory, how they are executed on a computer, and how
you can watch the execution in a debugger.

As with the previous lab, work in teams of two. You may choose your own partner—anyone except your
partner for the Data Lab.

To get started, ssh into the pom-itb-cs2 server, create a directory in which to work on this laboratory, and
make it your working directory. Then use

% tar xvf /data/processlab.tar

to unpack the tar file into your working directory. You may also want to re-mount your cs105 folder to the
server, as we did in the Data Lab.

You will now have a directory processlab which contains this writeup, four short C language programs,
and a template for you to fill complete and submit. Begin by opening the file processlab.txt in an editor
and put the names of all the team members at the top. Fill in your results as you work on the lab. When
you have completed the lab, submit the file processlab.txt on the course submission page. Only one
team member should submit the result. You may, of course, submit updates to your work; just be sure that
everything is submitted by the same team member.

The five parts of this laboratory are weighted equally. Your score will be based on a total of 50 points.

1 Re-interpreting Data Values

We begin with a short exercise in the C language. In many ways, the C language is like Java. The syntax
for variable and function declarations, assignment statements, for and while loops, and if-statements are
the same in both languages. The big difference is that in C we have a different view of data, one that is
closer to the actual hardware. We must be aware of where in memory values are located and how much
space they occupy. This part of this laboratory assignment will give you practice in thinking about variables,
pointers, and arrays—and how they relate to addresses and values in memory. Later parts will extend that
understanding to machine instructions and how they are stored in memory.

The program plab1.c reads six integers into an array. It then interprets the first four integers as a string and

Credits: Many of the exercises here are adapted from the Debugger Lab written by Professor Geoff Kuenning of Harvey Mudd
College. We are grateful to him.

1



the last two as a double and prints the results. Your job is to find integers that will cause the program to
print some specified values.

Begin by reading the program and understanding what it does. Become familiar with the notation used in
the program, particularly the parts using pointers and casts. Then compile it by tying

% gcc -o plab1 plab1.c

on the command line. Do not change the program’s source. Next, create a text file named plab1.soln with
six integers, one to a line. Begin by making them all zero. Run the plab1 program with the input redirected
from the plab1.soln file.

% ./plab1 <plab1.soln

0.0000000000000000

The blank line in the output shows that the string is empty. The double is zero. As a further warm-up,
change the first of the six integers to 14132. The string now has two characters—which happen to be digits.
(It is a string of characters, not a number!) The double is still zero.

% ./plab1 <plab1.soln

47

0.0000000000000000

1. Fill plab1.soln with six integers to produce this result.

% ./plab1 <plab1.soln

Cecil Sagehen

3.1415926535897931

When you have the solution, copy the six integers, one to a line, under the heading Part 1 in the file
processlab.txt.

Suggestion: It is possible, but long and tedious, to compute by hand the four integers corresponding to
“Cecil Sagehen.” But it is not practical (or a good use of your lifespan!) to compute the two integers
corresponding to the decimal expansion of � . Think about writing a short program, separate from
plab1.c, that will calculate the integers for you.

2. The six-integer sequence you produced is not unique. Other sequences will produce the same result.
How many different solutions are there?

Before proceeding to the next part, take a few minutes to reflect on what you did. The actual values of the
integers are not important. If they were all you cared about, you could ask someone in the lab. Be sure that
you understand what is happening with the bytes in memory. Also, take some time to understand the pointer
arithmetic and type casts in the source file plab1.c.

2 Looking at Data in the Debugger

The second part of the lab continues our tour of data representation. The debugger gdb lets you look at data
at the the bit- and byte-level.
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Open the file plab2.c. It file contains three static constants and and a short main function. The function
is there only so that the program will compile. Right now, we are only concerned with the data.

Compile the program without optimization (but with the -g flag!) and bring up the debugger on it.

% gcc -g -o plab2 plab2.c

% gdb plab2

Put your answers to the following questions under the heading Part 2 in processlab.txt.

1. gdb provides you lots of ways to look at memory. For example, type “print puzzle1.” What is
printed?

2. Gee, that was not very useful. Sometimes it is worth trying different ways of exploring things. How
about “p/x puzzle1”? What does that print? Is it more edifying?

3. You’ve just looked at puzzle1 in decimal and hex. There is also a way to treat it as a string, although
the notation is a bit inconvenient. The “x” (examine) command lets you look at arbitrary memory
in a variety of formats and notations. For example, “x/bx” examines bytes in hexadecimal. Try it
by typing “x/4bx &puzzle1.” (The “&” symbol means “address of”; it is necessary because the x

command requires addresses rather than variable names.) How does the output you see relate to the
result of “p/x puzzle1”? (Incidentally, you can look at any arbitrary memory location with x, as in
“x/wx 0x8048500”.)

4. OK, that was interesting and a bit weird (and we will be covering it in class soon). But we still do
not know what is in puzzle1. We need help! And fortunately gdb has help built in. So type “help
x”. Then experiment on puzzle1 with various forms of the x command. For example, you might
try “x/16i &puzzle1”. (x/16i is one of our favorite gdb commands—but since here we suspect
that puzzle1 is data, not instructions, the results might be interesting but probably not correct.) Keep
experimenting until you find a sensible value for puzzle1. What is the human-friendly value of
puzzle1? Do not accept an answer that is partially garbage!

Hint: Although puzzle1 is declared as an int, it is not. On our machine an int is 4 bytes, 2
halfwords, or one—in gdb terms—word.

5. Having solved puzzle1, look at the value carefully. Is it correct? (You might wish to check it online.)
If it is wrong, why is it wrong?

6. Now we can move on to puzzle2. It pretends to be an array of ints, but you might suspect that it is
something else. Using your newfound skills, figure out what it is.

Hint: since there are two ints, the entire value occupies 8 bytes. What is the human-friendly value?
It iss not “105.”

7. Are you surprised?

8. Is it correct?

9. We have one puzzle left. By this point you may have already stumbled across its value. If not, figure
it out; it is often the case that in a debugger you need to make sense of apparently random data. What
is stored in puzzle3?

3



3 Debugging Optimized Code

Let us now move on to exploring instructions and their execution. The file plab3.c contains a function
that has a small while loop, and a simple main that calls it. Briefly study the loop_while function to
understand how it works. It is not necessary to fully decode it right now; just get a clue about what i going
on.

There are a few details that are not obvious.

� Find out what the atoi function does by typing “man atoi” in a terminal window. (The function
name is pronounced “ay-2-eye”.)

� The printf function is quite complicated, for now we will just say that it prints answers, and "%d"

means “print in decimal.” We encourage you to read more about printf in Kernighan & Ritchie or
online. The advantage of reading in K&R is that the description there is less complex.

� Finally, argv is an array containing the strings that were passed to the program on the command line
(or from gdb’s run command); argc is the number of arguments that were passed. By convention,
argv[0] is the name of the program, so argc is always at least 1.

Compile the program with the -g switch and with no optimization and then run it in the debugger.

% gcc -g -o plab3 plab3.c

% gdb plab3

Set a breakpoint in main, tell gdb not to debug the atoi function, and then run the program.

(gdb) break main

(gdb) skip atoi

(gdb) run

(Often commands in gdb may be abbreviated by single letters, like b or r.) The program will stop at the
beginning of main.

Put your answers to the following questions under the heading Part 3 in processlab.txt.

Suggestion: In the instructions below, the italicized comments show the breakpoint where the debugger
should have stopped for that step. Use them to keep track of where you are in the program. Do not be afraid
to start over if you lose track or become confused.

1. Existing breakpoint at main.
Type “c” (or “continue”) to continue past the breakpoint. What happens?

2. Existing breakpoint at main.
Type “bt” (or “backtrace”) to get a trace of the call stack and find out how you got where you are.
Take note of the numbers in the left column. Type “up n”, where n is one of those numbers, to get to
main’s stack frame so that you can look at main’s variables. What file and line number are you on?

3. Existing breakpoint at main.
Usually when bad things happen in the library it is your fault, not the library’s. In this case, the
problem is that main passed a bad argument to atoi. There are two ways to find out what the bad
argument is: look at atoi’s stack frame, or print the argument. Figure out how to look at atoi’s stack
frame. Can you see the value that was passed?
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4. Existing breakpoint at main.
The lack of information is sometimes caused by compiler optimizations, other times by minor de-
bugger issues. In either case it is a nuisance. Rerun the program by typing “r” and let it stop at the
breakpoint. Note that in step 2, atoi was called with the argument “argv[1]”. You can find out the
value that was passed to atoi with the command “print argv[1]”. What is printed?

5. Existing breakpoint at main.
The number you see is the value of a NULL pointer. Like many library functions, atoi does not like
NULL pointers. Rerun the program with an argument of 5 by typing “r 5”. Continue from the the
breakpoint. What does the program print?

6. Existing breakpoint at main.
Without restarting gdb, type “r” (without any further parameters) to run the program yet again. (If
you restarted gdb, you must first repeat Step 5.) When you get to the breakpoint, examine the vari-
ables argc and argv by using the print command. For example, type “print argv[0].” Also
try “print argv[0]@argc”, which is gdb is notation for saying “print elements of the argv array
starting at element 0 and continuing for argc elements.” What is the value of argc? What are the
elements of the argv array? Where did they come from, given that you did not add anything to the
run command?

7. Existing breakpoint at main.
The step or s command is a useful way to follow a program’s execution one line at a time. Type “s”.
Where do you wind up?

8. Existing breakpoint at main.
gdb always shows you the line that is about to be executed. Sometimes it is useful to see some context.
Type “list” What lines do you see? Hit the return key. What do you see now?

9. Existing breakpoint at main.
Enter “s” to step to the next line. Then hit the return key three times. What do you think the return
key does?

10. Existing breakpoint at main.
What are the values of result, a, and b?

11. Type “quit” to exit gdb. (You will have to tell it to kill the “inferior process”, which is the program
you are debugging. Insulting!) Recompile the program, this time optimizing it with -O1 (and includ-
ing -g for debugging). Debug it, set a breakpoint at loop_while (not at main!), and run it with an
argument of 10. Step three times. What four lines of code from program1.c are shown to you? Why
do you think the debugger is showing you those lines in that order?

12. Quit gdb again and recompile with -O2. Debug the program. Disassemble the main function by
typing “disassem main”. What is the address of the instruction that calls atoi? What is the address
of the instruction that calls printf? You will have to do some deduction here, because gcc mangles
the names a bit.

13. What is the address of the instruction that calls loop_while? Hint: don’t spend too much time on
this one
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14. A handy feature of print is that you can use it to convert between bases. For example, what happens
when you type “print/x 42”? How about “p 0x2f”?

15. We may not have covered it yet, but functions return results in %rax (also known, for this problem, as
%eax), so the result of atoi will be in %rax. After the call to atoi there is a lea, a mov, a nopl, then
an add and a sub. Where does the constant in the sub come from?

16. Now you (kind of) understand the optimized main. What happened to the call to loop_while?

17. If you compile with -O3 and disassemble the main program, you will discover that all traces of the
loop have disappeared. We will not try to analyze it now—in particular, some of the instructions may
not be covered in this course—but it is useful to know that the compiler has figured out the underlying
math of loop while and replaced it with a straight-line calculation. Wow!

There are other ways of looking at the code generated by the compiler. You may want to experiment with
them and verify that they give the same information—perhaps in a slightly different form—as gdb.

� You can use the compiler directly, with the -S flag.
% gcc -g -S plab3.c

Insert whatever optimization flag you like. The resulting assembly language listing will appear in a
file named pleb.s.

� Or, you can use the utility program objdump to “de-compile” or “disassemble” an object file.
% gcc -g -c plab3.c

% objdump -d plab3.o

Again, include an optimization flag on the gcc line if you wish. The assembly language listing will
appear in the terminal.

A process is a complex abstraction. There are instructions, memory addresses, data values, and interpreta-
tions of data values—all expressed as sequences of bits. We will spend time in the semester filling in the
details of what you see here. For now, it is important to distinguish among the various kinds of entities
(instructions, addresses, values, . . . ) that you are seeing.

4 Stepping through Compiled code

Turn now to the file plab4.c. It contains three functions. Read the functions and figure out what they do.

Recall that argc is the number of arguments on the command line, including the name of the program. The
malloc line allocates a variable-sized array big enough to hold argc integers (which is slightly wasteful,
since we only store argc � 1 integers there, but what the heck).

Compile the program without optimization but with -g, and bring up the debugger on it.

% gcc -g -o plab4 plab4.c

% gdb plab4

Put your answers to the questions under the heading Part 4 in processlab.txt.

1. Set a breakpoint in fix_array. Run the program with the arguments 1 1 2 3 5 8 13 21 44 65.
When it stops, print a_size and verify that it is 10. Did you really need to use a print command to
find the value of a_size? Hint: look carefully at the output produced by gdb.
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2. Existing breakpoint at fix array.
What is the value of a?

3. Existing breakpoint at fix array.
Type “display a” to tell gdb that it should display a every time you stop. Step six times. You will
note that one of the lines executed is a right curly brace; this is common when you’re in gdb and often
indicates the end of a loop or the return from a function. After returning, what is the value of a?

4. Existing breakpoint at fix array.
Step again (a seventh time). What is the value of a now? What is i?

5. Existing breakpoint at fix array.
At this point you should (again) be at the call to hmc_pomona_fix. You already know what that
function does, and stepping through it is a bit of a pain. The authors of debuggers are aware of that
fact, and they always provide two ways to step line-by-line through a program. The one we’ve been
using (step) is traditionally referred to as “step into”—if you are at the point of a function call, you
move stepwise into the function being called. The alternative is “step over”—if you are at a normal
line it operates just like step, but if you are at a function call it does the whole function just as if it
were a single line. Try that now. In gdb, it is called next or just n. What line do we wind up at?
(Incidentally, in gdb as in most debuggers, the line shown is the next line to be executed.)

6. Existing breakpoint at fix array.
Use n to step past that line, verifying that it works just like s when you are not at a function call. What
is a now?

7. Existing breakpoint at fix array.
It is often useful to be able to follow pointers. gdb is unusually smart in this respect; you can type
complicated expressions like p *a.b->c[i].d->e. Here, we have kind of lost track of a, and we
just want to know what it is pointing at. Type “p *a”. What do you get?

8. Existing breakpoint at fix array.
Often when debugging, you know that you do not care about what happens in the next three or twelve
lines. You could type “s” or “n” that many times, but we’re computer scientists, and CS types sneer
at work that computers could do for them—especially mentally taxing tasks like counting to twelve.
So on a guess, type “next 12”. What line are you at?

9. Existing breakpoint at fix array.
What is the value of a now?

10. Existing breakpoint at fix array.
What is the value of *a?

Finally, a small side comment: if you’ve set up a lot of display commands and want to get rid of some of
them, investigate info display and undisplay.
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5 Assembly-Level Debugging

So far, we’ve been taking advantage of the fact that gdb understands your program at the source level: it
knows about strings, source lines, call chains, and even complicated data structures. But sometimes we have
to get down and dirty with the assembly code.

We will use plab4 again. To be sure we are all on the same page, quit gdb and bring it up on plab4 again.
Run the program with arguments of 1 42 2 47 3. As you have been doing, put your answers under the
heading Part 5 in processlab.txt.

1. What is the output?

2. Set a breakpoint in main. Run the program again. Where does it stop?

3. Existing breakpoint at main.
Type “list” to see what is nearby, then type “b 41” and “c”. Where does it stop now?

4. Existing breakpoints at main lines 33 and 35.
So since that is the start of the loop, typing “c” will take you to the next iteration, right?

5. Existing breakpoints at main lines 33 and 35.
Oops. Good thing we can start over by just typing “r”. Continue past that first breakpoint to the
second one, which is what we care about. But why, if we are in the for statement, did it not stop
the second time? Type “info b” (or “info breakpoints” for the terminally verbose). Lots of
good stuff there. The important thing is in the “address” column. Take note of the address given for
breakpoint 2, and then type “disassem main”. You will note that there is a helpful little arrow right
at breakpoint 2’s address, since that is the instruction we are about to execute. Looking back at the
corresponding source code, what part of the for statement does this assembly code correspond to?

6. Existing breakpoints at main lines 33 and 35.
The code at +44 jumps to main+104, which has three instructions that jump back to main+46. This
is all part of the for loop pattern we covered in class. We have successfully breaked (“broken?” “Set
a breakpoint?”) at the initialization of the loop. But we’d like to have a breakpoint inside the for loop,
so we could stop on every iteration. The jump to main+46 tells us that we want to stop there. But
that is not a source line; it is in the middle clause of the for statement. No worries, though, because
gdb will let us set a breakpoint on any instruction even if it is in the middle of a statement. Just type
“b *(main+46)” or “b *0x40068f” (assuming that is the address of main+46, as it was when we
wrote these instructions). The asterisk tells gdb to interpret the rest of the command as an address
in memory, as opposed to a line number in the source code. What does “info b” tell you about the
line number you chose? (Fine, we could have just set a breakpoint at that line. But there are more
complicated situations where there is not a simple line number, so it is still useful to know about the
asterisk.)

7. Existing breakpoints at main lines 33 and 35, and instruction main+46.
We can look at the current value of the array by typing “p array[0]@argc”. But the current value
is not interesting. Let us continue a few times and see what it looks like then. Typing “c” over and
over is tedious (especially if you need to do it 10,000 times!) so continue to breakpoint 3 and then try
“c 4”. What are the full contents of array?
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8. Existing breakpoints at main lines 33 and 35, and instruction main+46.
Perhaps we wish we had done “c 3” instead of “c 4”. We can rerun the program, but we really do
not need all the breakpoints; we’re only working with breakpoint 3. Type “info b” to find out what
is going on right now. Then use “d 1” or “delete 1” to completely get rid of breakpoint 1. But
maybe breakpoint 2 will be useful in the future, so type “disable 2”. Use “info b” to verify that
it is no longer enabled (“Enb”). Continue past breakpoint 1, where we’re stopped. Where do we stop
next? (We hope it is not a surprise!)

9. Sometimes, instead of stepping through a program line by line, we want to see what the individual in-
structions do. Of course, instructions manipulate registers. Quit gdb and restart it, setting a breakpoint
in fix_array. Run the program with arguments of 1 42 2 47 3. Type “info registers” to see
all the processor registers in both hex and decimal. Which of the registers have not been covered in
class?

10. Existing breakpoint at fix array.
Well, that is because they’re weird and not terribly important. (Except eflags, which holds the condi-
tion codes among other things. Note that instead of being given in decimal, it is given symbolically—
things like CF, ZF, etc.) What flags are set right now?

11. Existing breakpoint at fix array.
Often, looking at all the registers is excessive. Perhaps we only care about one. Type “p $rax”. What
is the value? Is “p/x $rax” more meaningful?

12. Existing breakpoint at fix array.
We mentioned a fondness for “x/16i”. Actually, what we really like is “x/16i $rip”. What do you
see? Compare that to the result of “disassem fix array”.

13. Existing breakpoint at fix array.
Finally, we mentioned stepping by instructions. That is done with “stepi” (“step one instruction”).
Type that now, and note that gdb gives a new instruction address but still says that you’re in the for
loop. Hit return to stepi again, and keep hitting return until the displayed line does not contain a
hexadecimal instruction address. Where are you?

14. Existing breakpoint at fix array.
It is useful to use “x/16i $rip” here to make sure we understand what is about to happen. You
should see three mov instructions followed by a call. Use stepi 3 to get past the movs. What
instruction address will be executed next?

15. Existing breakpoint at fix array.
As with source-level debugging, at the assembly level it is often useful to skip over function calls. At
this point you have a choice of typing “stepi” or “nexti”. If you type “stepi”, what do you expect
the next instruction to be (hexadecimal address)? What about “nexti”? (By now, your debugging
skills should be strong enough that you can try one, restart the program, and try the other, so there is
little excuse for getting this one wrong!)

16. Existing breakpoint at fix array.
Almost there! Stepping one instruction at a time can be tedious. You can always use “stepi n” to zip
past a bunch, but when you’re dealing with loops and conditionals it can be hard to decide whether it
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is going to be 1,042 or 47,093 instructions before you reach the next interesting point in your program.
Sure, you could set a breakpoint at the next suspect line. But sometimes the definition of “interesting”
in inside a line. Let us say, just for the sake of argument, that you are interested in how the leavq

instruction works. You can set a breakpoint there by typing “b *0x40065f” (assuming that 0x40066f
is its address, as it was when we wrote these instructions). Do so, and then continue. What source
line is listed?

17. Existing breakpoints at fix array and *0x40066f.
The leaveq instruction manipulates registers in some fashion. Start by looking at what %rsp points
to. You can find out the address with “p $rsp” and then use the x command, or you could just try
“p/x $rsp”. What are the values of rsp and rbp?

18. Existing breakpoints at fix array and *0x40066f.
Use “info reg” to find out what all the registers. Then stepi until you execute the leave instruction,
and look at all the registers again. Have the values in the rsp or rbp registers changed, and what are
their old and new values?
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