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Abstract 

In this paper we examine reinforcement learning problems which 
consist of a set of homogeneous entities.  These problems tend to 
have extremely large state spaces making standard approaches 
unattractive.  We study lane change selection in a car traffic control 
problem as an example of such a problem.   We show how a single 
agent problem can be translated into an approximating multi-agent 
problem.  We provide learning results in a traffic simulator using 
this multi-agent approximation with Q-learning and R-learning.  
Learning in the multi-agent problem proceeds quickly and 
outperforms heuristic methods.  Experimental results show that 
learned methods perform better than heuristic methods as traffic 
densities increase towards rush hour conditions.  We summarize 
the translation method used from a single agent problem to a 
related multi-agent problem for car traffic control and propose this 
as a starting place for related problems. 

1  Intro duct io n  

Reinforcement learning (RL) methods have been used to solve many problems 
where supervised methods are not appropriate.  In many of these domains, the 
environment is too complicated to generate data for standard supervised methods.  
With reinforcement learning, an agent explores its environment, receiving a reward 
signal as it explores, and tries to optimize the sum of these rewards.  There are many 
real world problems that can be formulated as reinforcement learning problems, but 
cannot be solved by current methods.  In some situations, the problem may be too 
complicated for learning to converge in a reasonable amount of time.  In other 
situations, restrictions posed by the learning setup make the methods inappropriate 
for practical use.  In this paper we examine one such subset of RL problems, and 
propose a possible solution that uses previous learning methods, but modifies the 
problem setup.  For an overview of RL methods and example applications, see 
Sutton and Barto (1998). 

Not all single agent problems can be translated to multi-agent problems.  Problems 
that are suitable contain an omnipotent agent that is controlling the behavior of a 



 

number of similar entities.  Examples of this include car traffic control, packet 
routing and game playing.  In these domains the most intuitive rewards concern all 
of the entities.  However, optimizing a system with tens of thousands of cars, 
routers or other entities is burdensome for current RL methods.  In this paper, we 
propose a methodology to find solutions that approximate the optimal solutions that 
would be found if the original, single agent problem were solved.  We provide 
experimental results for one example domain, car traffic control. 

2 Learning Lane Changing Strategies  

For the rest of the paper, we will examine car traffic control as an example of a 
reducible single agent problem.  Reinforcement learning algorithms require three 
components to be defined:  the set of states S, the set of actions A and the reward 
function R(s,a), where s � S and a � A.  In this section, we define a straightforward 
single agent setup to the car traffic control problem.  We identify problems with this 
setup and show how the single agent problem can be reduced to a multi-agent 
problem.  

2 .1  The  S ing le  Ag ent  Se tup  

Before we investigate the multi-agent problem, we will first outline the idealized 
single agent case that we are attempting to approximate.  The idealized version of 
the problem trains a single omnipotent agent.  This agent controls the lane changing 
of all the cars.  Each state s � S consists of the positions of all the cars in the system, 
all cars’ desired speeds and all cars’ actual speeds.  The actions a � A consist of a 
lane choice for each car.  The reward function, R(s,a) is the negative mean squared 
difference between a car’s desired and actual speeds minus the number of lane 
changes made.  Specifically: 

where x(d) is the desired speed of the car, and x(v) is the actual speed.  Notice that 
both of the parts of the reward function are over all cars.  This reward function is 
calculated at every time step of the system.  The 25 in front of the lane changes 
specifies how a lane change is valued versus the speed difference component.  A 
constant of 25 means that a lane change is not desired until the speed difference gets 
over 5 mph.  Note that the maximum reward possible for a state-action pair is zero 
and occurs when no lane changes are made and all cars are going their desired 
speeds. 

Given this setup, any of the many standard reinforcement learning methods could be 
applied to get a solution.  Unfortunately, the setup described above has a number of 
problems.  If a small number of cars are to be modeled, then the state space may be 

 
Figure 1:  Example state of a single agent 
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of a manageable size.  If the goal is to model normal traffic on a freeway, however, 
then the number of cars will be in the thousands.  This large number of cars implies 
that the state space will be extremely large.  This has two ramifications.  We may be 
unable to represent the state space well because function approximators would have 
to be used.  Worse, however, training such a large state space would take a large 
number of training runs. A more critical problem than the state space size is that the 
state space must consist of a static number of cars, determined prior to learning.  For 
simulations this may be appropriate, however, for real world environments the 
number of cars will be constantly changing.  The combination of these factors 
makes this setup unattractive. 

2 .2  Appro xima t ing  the  Idea l i zed  Pro blem 

In this section we present an approximation to the idealized single agent setup.  The 
basic idea is to reduce a single omnipotent agent problem to a multi-agent problem 
where each of the controllable entities in the single agent formulation becomes an 
agent.  States and actions are changed to represent the states and actions available to 
one of these multi-agents.  The main problem with this type of setup is that the 
reward function can no longer be calculated from a state and an action, but must be 
calculated from the states and actions of all the multi-agents.  We provide a number 
of possible ways in which a new reward function can be calculated. 

2 .2 .1  Act io ns  

We will follow the approach of Moriarty & Langley (1998) in which the actions are 
whether to stay in the current lane, move left or move right (A = {move left, stay, 
move right}).  This set of actions provides a simplified action set and is 
independent of the number of lanes in which the cars are traveling.  With this 
specification, the learning can be done with a different number of lanes than in the 
testing environment. 

2 .2 .2  S ta te s  

One of the crucial decisions for reinforcement learning is the state definition.  Since 
this is a multi-agent system, the agent only has access to its surrounding 
environment and has minimal communication with the other agents.  This is quite 
different from the single agent system that knows all the information about all the 
cars. 

2.2.2.1 A Previous Approach to State Representation 

Before we discuss the representation used in this paper, we first discuss one 
approach by Moriarty & Langley (1998) that we will improve upon.  For the car 
being controlled, the state contains both the current and desired speeds.  For the 
surrounding cars, the relative speeds and what type of lane changing policy is being 
followed are included (a binary choice between the learned strategy and a greedy, 
heuristic strategy).  Except for the binary variables, all other variables are integers 
over a range based upon physical conditions (approximately 50 possible values). To 
simplify the state space, they chose to represent the location of the surrounding cars 
not by a numerical value, but by defining eight locations surrounding the car that 
could contain a car (front, rear, left, right, front right and left, and rear right and 
left).  Although this state space provides a good representation of an agent’s 
environment, the state space size is on the order of 5010 * 28 = 2.5 * 1019 states.  
This state space size has a number of consequences.  Any state space this large must 
use some sort of function approximator for the value function.  Also, many states 
will be visited infrequently, so some states will have to be inferred from similar 



 

states.  Although these consequences are not necessarily bad, we hypothesize that 
this state representation is too detailed. 

2.2.2.2 A More Concise State Representation 

In this section we describe the state space used throughout the rest of the paper. We 
make two modifications to the previous representation.  First, we do not include 
surrounding car types (greedy or learned).  Although this information was useful for 
their experimentation, it is not worth the blow up in state space size.  Second, 
Moriarty and Langley used integers to represent the other state variables.  We 
hypothesize that this representation is too specific.  How much information does a 
car gain by knowing that the car to its left is going 10 miles faster versus 11 miles 
faster?  In this paper, we reduce the set used to represent adjacent cars to four 
values:  faster, slower or equal to the car’s actual speed or empty.  The motivation 
for this choice was to minimize the set of possible values while still maintaining the 
relevant information.  Further research is needed to investigate other possible 
choices, which could involve binning the relative speeds into speed ranges, such as 
“between 0-5 miles faster,” etc. 

As in Moriarty and Langley (1998), only the eight surrounding cars are used for 
position in the state representation.  This specification is informative, but still 
concise.  A surrounding space is considered empty if there is no car in that space 
within 200 ft. (this was chosen as a reasonable value, but could be set based on 
actual sensor performance). 

Finally, instead of using both the desired speed and the actual speed of the car as 
state variables, we only consider whether the car is traveling at its desired speed or 
not1.  The representation used in this paper is summarized in Figure 1.  This 
construction gives a state space of size 48 * 2 = 131,072 states, which is much 
smaller than the previous size of 2.5 * 1019 states. 

Before we move onto describing the reward function it is worth examining this 
multi-agent state space size versus the idealized single agent state space.  Consider 
modeling a system with 1000 cars.  This is still much smaller than real world 
environments.  Assume that the state space for the single agent consists of a 
simplified state for each car similar to that just described.  For 1000 cars, there will 
be approximately (131,072)1000 � 105000 states.  The multi-agent state space size is 
independent of the number of cars, but the single agent state space grows 
exponentially with the number of cars. 

2 .2 .3  Rew a rd  func t io n  

The idealized, single agent reward function is in terms of all of the cars in the 
system.  The multi-agent state, however, only represents the environment of a single 
car.  We present two different methods for creating reward functions from the 
reward function for the single agent system. 

The first function, which we call the SingleCar reward function, uses only the 
information directly available to one multi-agent and does not use information about 
the other agents in the system.  Specifically: 

                                                           
1 In the real world, a car could be going slower, faster or equal to the desired speed, but 
the simulation design prevents a car from going faster than its desired speed. 
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where, as above, x(d) is the desired speed and x(a) is the actual speed.  This reward 
function relates directly to the single agent reward function, R, as follows: 

In the traffic problem, the reward function for the multi-agent problem can be 
formulated similarly to the single agent problem, except that only the state of a 
single car is used.  In some situations, however, the single agent reward function is 
not in a suitable form for this type of reduction.  For example, if the single agent 

reward function was the sum of the differences, squared, instead of the sum of the 
squared differences. 

We propose a second, general purpose, method for approximating the single agent 
reward function in the multi-agent environment.  The reward function is calculated 
over all multi-agent states as if the problem were a single agent problem.  This 
results in a single number, which is the reward for the single agent state.  That 
single reward is given as the reward for all of the multi-agent states for that time 
step.  The advantage of this method is that it is applicable in any situation where a 
single agent setup has been reduced to a multi-agent setup.  The disadvantage is that 
the reward function for the multi-agents becomes noisy.  For the traffic problem, we 
call this reward function AllCars. 

2 .3  The  Lea rn ing  Alg o r i thms  

Two different reinforcement learning algorithms are used:  Q-learning (Watkins, 
1989) and a variation of R-learning (Singh, 1994).  Since the state space was 
reduced in size and the problem is formulated as a multi-agent learning problem 
where all the agents update the same function, a lookup table was used to represent 
the value function.  We chose to represent the value function as the action-value 
function, Q(s,a), since a complete model of the environment is not readily available 
to an agent; an agent does not know the locations of surrounding cars for the next 
time step. 

2 .3 .1  Q- lea rn ing  

Q-learning is a standard reinforcement learning method that has proved successful 
in a wide range of domains (Sutton & Barto, 1998 *** possibly a better citation).  
We use the simplest version of Q-learning which is undiscounted, one-step Q-
learning.  The Q-function is updated by the following rule: 

( )),(max),(*)1(),( 111 1 ++∈+ +
+∗+−← ttAattttt asQrasQasQ

t
ββ  

where rt+1 is the reward for taking action at in state st, � is the learning rate 
parameter and ),(max 111 ++∈+ ttAa asQ

t
 is the largest Q value over all possible next 

actions at+1 from the next state st+1. 

2 .3 .2  M o di f i ed  R- lea rn ing  

R-learning is a method for undiscounted, average reward reinforcement learning 
problems.  There are many domains where the task is cyclical, which results in 
returns Rt (cumulative rewards) that may be unbounded.  For traditional 
reinforcement learning methods to work in these domains they are traditionally 
discounted.  Discounting forces rewards on the horizon to diminish, causing the 
returns to converge.  In many domains, such as this one, discounting future actions 
does not make sense. 
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Average reward reinforcement learning methods generally work by estimating the 
long term average of the system and updating the value function based on whether 
the reward received is better or worse than the estimated average.  For an overview 
of undiscounted, average reward methods see Mahadevan (1996).  R-learning is a 
average reward RL where the action value function R(st, at) is learned (Schwartz, 
1993).  This R-function represents the average adjusted value of doing action at in 
state st.  We use a modified version of R-learning (Singh, 1994) where the estimated 
average reward ��are�updated�as�follows:�

� ( )tttAattttt asQrasRasR
t

ρββ −+∗+−← ++∈+ +
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�
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where�rt+1� is� the�reward�for� taking�action�at� in�state�st,��� is� the� learning�rate� for� the�
estimated� average� reward,� �� is� the� learning� rate� for� the� R-function� and��

),(max 111 ++∈+ ttAa asR
t

is�the�largest�R�value�over�all�possible�next�actions�at+1�from�
the�next�state�st+1.�

3� Experiments �

We� performed� two� sets� of� experiments� to� analyze� the� performance� of� the� learning�
methods.� �Four� learning�methods�were� tested� resulting� from� the�product� of� the� two�
learning� methods� (Q-learning� and�R-learning)� and� two� reward� functions� (SingleCar�
and�AllCars).��Two�heuristic�methods�similar�to�those�used�in�Moriarty�and�Langley�
(1998)�were�used�for�comparison�purposes.��A�greedy�car�changes�lanes�to�the�car�if�
the�car�in�front�of�it�is�going�slower�than�it�and�the�left�lane�is�empty.��If�the�left�lane�
is� not� empty,� but� the� right� lane� is� empty� then� it� will� change� right.� � A� polite� car�
implements� the� previous� two� rules,� but� also� changes� lanes� to� the� right� if� the� right�
lane�is�open�and�the�car�behind�it�is�going�faster�than�it.�

All� the� learning� methods� used� the� same� learning� parameters,� which� were� chosen�
based� on� values� used� by� other� authors:� �=.05� and� �=.5� (Sutton� &� Barto,� 1998;�
Mahadevan,� 1996).� � The� learning� agents� employ� an� �-greedy� decision� strategy�
where� the� greedy� action� is� chosen� with� probability� (1-� �),� otherwise� an� action� is�
chosen�randomly.����=.1�was�used�for�all�experiments.�

3 . 1 � Tra f f i c �S imula to r �Se t t ing s �

Since�learning�in�a�real�world�environment�is� infeasible,�a�simulator�was�used.� �The�
simulator� progresses� by� discrete� time� steps.� � Each� time� step� is� equivalent� to� one�
second.� � During� a� time� step,� all� the� cars�will�move� forward� and�may� change� lanes.��
Lane� changes� occur� in� a� single� time� step.� � This� short� lane� change� time� may� be�
unrealistic,� however,� difficulties� arise� in� trying� to� simulate� a� multi-time� step� lane�
change.�
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All� cars� in� the� simulator� are� the� same� size,� 15� ft.� � This� is� a� common� size� for� a�
midsize�car.��The�simulator�consists�of�5�miles�of�one�way,�multilane�roadway.��The�
road� wraps� around� from� the� end� to� the� beginning� creating� an� infinite� length� of�
roadway.��The�desired�speed�of�the�cars�is�selected�from�a�gaussian�distribution�with�
mean�72�mph�and�standard�deviation�6.� �Given� this�distribution,�most�of� the�values�
should�be�between�66�mph�and�78�mph�with�almost�all�values�between�54�mph�and�
90� mph.� � These� values� appear� consistent� with� observed� freeway� driving� habits� of�
California�drivers.�

One� of� the� main� difficulties� in� creating� such� a� simulator� is� trying� to� model� real�
human�behavior�in�driving.��There�have�been�a�few�papers�that�have�attempted�to�do�
this� (Ehlert� &� Rothkrantz,� 2001;� Sukthankar� et.� al.,� 1997),� however,� implementing�
these�would�be�a� formidable� task.� �For�this�paper,�we�model�a�simplified�version�of�
normal�freeway�driving.��Future�work�will�investigate�more�sophisticated�models.�

Cars� accelerate� and� decelerate� with� two� simple� rules.� � Deceleration� occurs� at� 2�
mph/s.��Acceleration�is�inversely�dependent�on�the�car’ s�current�speed:�

� smph
v

vA /
10
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where�v� is� the�current�speed�of�the�car.��These�rules�were�also�used�in�Moriarty�and�
Langley� (1998).� � These� rules� are� not� intended� to� represent� the� maximum�
performance�of�a�car.� � Instead,� these�rules�attempt� to�model�actual�acceleration�and�
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Figure�2:��Average�reward�for�the�four�learning�methods�and�two�heuristic�

methods�(3�lanes�on�top�and�4�lanes�on�bottom)�
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deceleration� that� occurs� in� a� freeway� environment.� � Most� acceleration� on� the�
freeway� does� not� involve� the� maximum� acceleration� possible� by� a� car� and�
deceleration�often�involves�the�driver�removing�his/her�foot�from�the�gas�pedal.�

Safety� is� always� enforced� in� the� traffic� simulator.� � Although� this� is� unrealistic,�
dealing�with�collisions�and�other�related�problems�is�beyond�the�scope�of�this�paper.��
A� safe� distance� is� maintained� between� a� car� and� the� car� in� front� of� it.� � This� safe�
distance� is� the� distance� the� car� would� travel� in� one� second� based� on� the� current�
speed.��For�example,�if�a�car�is�going�70�mph,�it�will�maintain�a�safe�distance�of�103�
ft.�between� it�and� the�car� in� front�of�it.� �If�a�car�is�going�faster�than�the�car�in�front�
of�it,� then�there�must�also�be�enough�room�for�it�to�slow�down�to�the�same�speed�as�
the�car�in�front�of�it�while�still�maintaining�the�safe�distance.�

3 .2 � Lea rn ing �Per fo rma nce �

We� investigated� the� four� learning� algorithms� in�both� three� and� four� lane� roadways.��
Algorithms� learned� for�15,000� time�steps�with�one�car�every�200� feet� (396�cars� for�
three� lanes�and�528� for� four� lanes).� �Figure�2� shows� the� learning�curves� for�15,000�
time�steps.��Figure�2�shows�the�median�run�out�of�10�separate�runs.��

As�was�seen�in�Moriarty�and�Langley�(1998),�the�learning�methods�performed�better�
than� the� heuristic� methods� and� the� polite� method� performed� better� than� the� selfish�
method.��Surprisingly,�all�the�learning�methods�performed�similarly.��The�R-learning�
methods,�which�are�tailored�to�this�type�of�problem,�generally�performed�worse�than�
the� Q-learning� methods.� � The� single� car� reward� function� performed� better� than� the�
all�cars�reward�function.�

Learning� stabilizes� quickly� for� all� the� learning� methods.� � All� the� learning� methods�
have� reached� their� approximate� peak� value� by� 3,000� time� steps.� � There� are� two�
reasons� for� this.� � First,� all� the� cars� in� the� system�are� improving� the�value� function.��
After�3,000�time�steps,�3,000�*�396�=�1,584,000�updates�have�occurred.��Second,�the�
reward� function� is�noisy�and� is�only�an�approximation�of� the� idealized� single�agent�
reward�function.�

We� also� tested� learning� performance� of� the� these� methods� for� the� same� number� of�
time� steps,� but� trained�with�6�different� sets�of� randomly�placed�cars� for�2,500� time�
steps�each.� �The� results�were� similar� to� the�continuous� learning�case,� except�all� the�

�
Figure�3:��Average�reward�per�car�for�the�six��

methods�as�car�density�increases�(3�lanes)�
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learning� methods� performed� better� when� trained� on� the� 6� different� sets� (***�
numbers).�

3 .3 � Increa s ing �Tra f f i c �Dens i ty �

We�also�tested�the�robustness�of�the�methods�as�the�traffic�density�increased.��Under�
normal� traffic� conditions� (non-rush� hour),� traffic� congestion� is� not� much� of� a�
problem.� � Most� drivers� are� able� to� maintain� their� desired� speeds.� � However,� as�
traffic�density�increases�and�the�general�flow�of�traffic�begins�to�slow,�methods�that�
reduce� this� congestion� become� more� important.� � Moriarty� and� Langley� only� tested�
traffic� densities� as� high� as� 400� cars� per� 13.3� miles� over� 3� lanes.� � This� is�
approximately�one�car�every�500�feet.��That�is�only�10�cars�per�mile,�which�is�much�
less�dense�than�rush�hour�conditions.�

We�trained�the�four�learning�methods�on�a�3�lane�roadway�with�396�cars�for�30,000�
time�steps�with�6�different�random�car�configurations�(each�car�configuration�ran�for�
5,000� time�steps).� �After�learning,� the�value�function�is�kept�constant�and�is�used�to�
test� the� results� as� the� traffic� density� increased.� �The�methods�were� tested�on� traffic�
densities�ranging�from�100�cars�to�1200�cars�on�a�3�lane�roadway�5�miles�long.��The�
maximum�density�is�approximately�one�car�every�50�ft.��This�is�much�closer�to�rush�
hour� traffic� conditions� than� previous� experiments.� � Simulating� traffic� densities�
higher� than� this� was� not� useful� because� simulator� parameters� (i.e.� maintaining�
safety)� prevented� cars� from� switching� lanes� at� all.� � Each� method� was� tested� on� 25�
different� random�car� configurations� for� each� traffic� density� (100�–�1200)� for� 5,000�
time� steps� each.� � This� process� was� repeated� three� times,� each� time� learning� a� new�
value�function.��Figure�3�shows�the�average�results�from�these�experiments.�

As� we� saw� in� the� learning� curve� experiments,� all� the� learning� methods� perform�
similarly� (even� more� so� in� this� experiment).� � We� hypothesize� that� because� of� the�
noisiness� of� the� reward� function,� the� methods� are� learning� very� similar� value�
functions�in�the�long�run.��Further�experimentation�is�needed�to�confirm�this.�

As� hypothesized,� the� learning� methods� perform� better� as� the� traffic� density�
increases.� �For� low�densities,� the�performance�of�all� the�methods� is�similar.� �As� the�
density� increases,� the� learned� methods� gradually� perform� better� than� the� heuristic�
methods.� � This� is� particularly� remarkable� given� that� the� learning� methods� were�
trained�with�a�fixed�car�density�of�396�cars.�

4� Conclusions�and�Future�Work�

To� conclude,� we� give� an� overview� of� the� basic� procedure� used� for� the� car� traffic�
control� problem� for� translating� a� single� agent� problem� to� an� approximating� multi-
agent� problem.� � The� first� step� is� to� specify� these� components� for� the� single� agent�
problem.��Particular�emphasis�should�be�put�on�the�reward�function.��Next,�the�states�
S,� the� actions� A,� and� the� reward� function,� R,� must� be� reformulated� from� the�
perspective�of� the� smaller�entities� so�as� to� still�capture� the�basic� information�of� the�
single� agent� problem.� � Section� 4.2.2� provided� a� general� method� for� doing� this� for�
any� translation.� � Finally,� a� reinforcement� learning� method� must� be� selected� and�
applied� to� the� problem.� � Each� entity� is� treated� as� an� independent� agent,� but� all�
agents�update� the�same�value� function.� �This�setup�can�produce�sub-optimal� results�
with� respect� to� the� original� single� agent� problem.� � Further� research� is� required� to�
bound�this�sub-optimality.�

We�examined�car�traffic�control�and�showed�that�learning�methods�performed�better�
than� heuristic� methods� even� without� tuning� learning� parameters.� � Future� work� will�
target� other� domains,� particularly� domains� where� solutions� using� single� agent� are�
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already� known.� � This� will� provide� a� baseline� to� examine� what� the� performance�
sacrifice�is�by�reducing�the�problem�to�a�multi-agent�problem.�

We� attempted� to� model� real� traffic� conditions� and� drivers� in� the� simulator�
developed.� � However,� the� simulator� used� for� experiments� is� still� a� long� way� from�
real�life�conditions.��Experimentation�in�a�more�realistic�environment�would�provide�
stronger�motivation�for�implementing�this�type�of�system�in�real�life.�
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