
SnipIt - A real time Dynamic Programing approach to
Snippet Generation for HTML Search Engines

Ian Carr
∗

Pomona College Department of Computer
Science

185 E. Sixth St.
Claremont, CA 91711

itc02006@mymail.pomona.edu

Lucy Vasserman
†

Pomona College Department of Computer
Science

185 E. Sixth St.
Claremont, CA 91711

lhv02006@mymail.pomona.edu

ABSTRACT
Returning a variety of search results is a key focus in the field
of Information Retrieval. However, due to lexical ambiguity,
results for a single search term spanning many categories can
be confusing for a user. A simple but powerful way to help
a user find the best documents for their information needs
is to return, along with an ordered list of documents, short
excerpts that help to differentiate and refine the documents’
meanings. We prepose a simple and fast algorithm to cre-
ate these so-called “snippets” that show query terms in the
context of the document as a means to further enhance the
user experience of an HTML based Information Retrieval
system.

1. INTRODUCTION
It has been found that returning short summaries or snippets
with search terms can greatly improve the user experience
of an IR system. Summaries give users an idea of what
content a document contains, allowing them to pick and
choose documents that better fit their information needs.
However, snippet systems differ from other IR tasks in their
demands on speed and execution time.

The majority of IR systems do a great amount of work to
insure that query results can be returned quickly. Tech-
niques such as postings lists, word counts, and other query-
independent1 techniques can all be done at index time. This
allows for the majority of web search engines to return re-
sults on the order of hundreds of milliseconds.

However, snippets are, by definition, very query-specific.
Because of this, great pains are required to insure that a
snippet is not only useful to a user, but can be generated for

∗The Handsome One
†The One who can Dance
1common to many query terms or words

multiple documents at search-time. This limits the ability
for snippet generators to be able to take other documents
or even the whole of a single document into account when
generating a snippet. This paper will not discuss the dif-
ficulties of storing full-text documents in memory (another
very worthy area of research), but rather a simple heuristic
based snippet generator that works to generate query-in-
context snippets in tens of milliseconds.

2. THE ALGORITHM
In approaching the problem of creating a relevant and use-
ful snippet per document at search-time, we chose to break
the problem down. Our algorithm first assigns each individ-
ual word a score, as determined by a linear combination of
several feature functions. Then, we use a dynamic program-
ing algorithm to return the best scoring set of words that
fit within a definable window size. In the following sections
we will discuss these features and the methodologies behind
them. Here, we discuss the base Dynamic Programing al-
gorithm, and then various efficiency improvements made to
decrease run time by a factor of 10. Finally we will analyze
our system against the snippets generated by the web search
engine Yahoo.com, as a flawed but still useful metric of our
system’s performance.

2.1 Word Features
One of the main uses for snippets is to allow a user to select
those documents from a ranked list that best suit their in-
formation need. Snippets compensate for the inherent prob-
lems with IR systems, as if a system were perfect a user
would have no need for snippets - the first document would
always perfectly satisfy their need. Therefore a good snip-
pet should help users differentiate the information content
with respect to the query terms of one document from that
of other returned documents.

However, due to the time and space requirements of an IR
system, it is often not feasible to have documents aware of
one another in the snippet generating process. Another rea-
son to not rely on access to other documents during snip-
pet generation is the need for many larger IR systems to
return query results from a distributed system of comput-
ers, making cross document snippet generation impossible
or very difficult. An ideal system returns snippets that help
to differentiate a document from other documents returned,
without not requiring access or knowledge of those other



documents.

The following discusses the feature functions we used to give
each word a score that aids our system in finding a maximal
window of words from which to form our snippet.

2.1.1 Query Term
One of the most basic ways to find a good snippet is to lo-
cate a set of adjacent words that contain many query terms.
By returning snippets that contain query terms we are able
to show them in context. While there may be a better set
of words to help differentiate two documents from one an-
other, we make the assumption that a user will be more
concerned with the differences between two documents in
terms of query term context than other contexts. While
other metrics, such as salient terms or keywords, may do a
better job at telling two documents apart in general, we are
trying to tell them apart in the particular area of their use
of query terms. Therefore, we give a high score to words
that match the query terms.

2.1.2 Proximity to Query Term
One of the important parts of giving a query term in context
is that context itself. By positively weighting words that
appear immediately adjacent to a query term we are able to
encourage snippets that contain a query term in the middle
of a sentence. It is important that we try to return snippets
with query terms roughly in their center, as the context of
a word is important. The main justification for this is to
prevent snippets from starting with or ending with a query
term if they are in the middle of a sentence. This slight
nudge was all our particular algorithm needed to keep query
terms roughly centered in returned snippets.

2.1.3 Punctuation
In order to provide snippets that contained more context
than just a mass of query terms, we chose to negatively
weight certain punctuation to avoid straddling sentence breaks
unless well justified. This means that the size of a returned
snippet is dynamic, and while it can be as long as a provided
window size, we may return a shorter snippet to prevent un-
necessarily spilling into other sentences. The only times we
do allow more than one sentence in a snippet is when both
sentences contain positively weighted information that off-
sets the negative cost of containing the punctuation. We
did not count semantically important punctuation such as
quotes, question marks, and exclamation marks in this fea-
ture.

2.2 Dynamic Programing Algorithm
For this research we chose to consider the best snippet for
a given document as the best words within a span between
index i and index j in the list of words in the document,
where j − i ≤ k for some window size k, such that:

jX
x=i

f1(x) + f2(x) + · · ·+ fn(x)

for some feature functions f1 to fn that take in a words
index and return a score. This conception of the problem has
the advantage of allowing us to use a dynamic programing
approach, but does have the downsides that our algorithm

is only as good as the underlying feature functions. For
a discussion of the feature functions used in this research,
please see 2.1.

Our algorithm, then, is tasked with returning indices i and
j representing a substring with maximal total score.

2.2.1 Correctness
We submit that our algorithm is correct in finding indices
i and j representing a substring with maximal total score.
We provide the following proof:

Optimal Substructure. Consider some maximal substring
i to j with words wi, wi+1, . . . , wj . Now consider the sub-
set of words of length one shorter than the previous, ei-
ther wi, wi+1, . . . , wj−1 or wi+1, wi+2, . . . , wj . If either has
a larger total score than our maximal solution, we would
use that one instead and have a better maximal solution.
Therefore this problem exhibits optimal substructure.

Recursive Definition. DP (i, j) = The optimal substring
within the window i to j. It does not necessarily con-
tain all words between i and j, it could be some smaller
substring within the window. There exists some function
S(i) which returns the score for the word at index i and
SUM(i, j) which returns the total score of the words at in-
dexes i through j.

DP (i, j) =

8>><>>:
S(i) if i = j

max(DP (i + 1, j), DP (i, j − 1)) if (j − i) > k
max(DP (i + 1, j),

DP (i, j − 1), SUM(i, j)) otherwise

Table. Our Dynamic Programing Table is a w × w table,
where w = the number of words in the document. It stores
in cell (i, j) what is needed to retrieve the maximal sequence
of adjacent words less than k in length. If we are calling our
function over a whole document, we would call DP (0, w−1).
After completing the call our snippet will be located in in
cell (0, w − 1) of our table.

2.3 Architectural Speed and Quality Enhance-
ments

The above algorithm runs in O(w2) where w is the word
count of the document. This means our algorithm runs in
time exponential to the length of the document it is generat-
ing a snippet for. Because of this, and the already discussed
need to keep the time costs of our code light, we made sev-
eral changes to speed up the operation of our base code.

2.3.1 Word Pre-Scoring
To avoid numerous calls for the score of a specific word, we
first calculate the scores of every word and then use this
array of scores in our algorithm. This is a slight speed im-
provement, but generally was just a cleaner implementation
choice.

2.3.2 Minimum Window Size



Our algorithm allows for snippets to be any size equal to or
less than the max size – a feature that allows our snippets
to avoid unsavory aspects such as meaningless beginnings or
ends to sentences. However, this also means that in some
rare cases our snippets can be very short – possibly one
word long in some instances. Because of this we added a
minimum window size where instead of reaching a base case
of one word, we return the sum of some minimum set of
words. This is both an improvement in quality (we avoid
snippets too short to be helpful) and a very slight speed
increase (as we reduce a small number of recursive calls).

2.3.3 Window Decrement Size
To reduce a larger number of recursive calls we added the
ability to set the amount a snippet window size decreases
in sub-calls to the algorithm. Instead of considering every
possible window, we instead only consider windows of size
k− l ∗ t, where k is the largest window size, l is the amount
we decrement by, and t is the recursive depth of this call.
While this change does prevent every combination of k or
fewer words form being considered, it does not actually affect
quality in our snippets as there are very few cases when using
one or two words less or more will prevent a good snippet
from being chosen. This reduced the runtime by a factor of
a little less than 2 for small decrement sizes.

2.3.4 Paragraphs as Documents
The largest speed gain we made was by calling our algorithm
on each paragraph in a document separately, as our corpus
contains indices for paragraph breaks. The downside to the
approach was that it became impossible for a snippet to
straddle a paragraph break. However, as it is questionable
if there are ever desirable snippets that straddle paragraph
breaks, and as this gave us a speed increase of almost a
factor of 10, it was deemed a good trade-off.

2.3.5 Snippet Stitching
To hopefully provide a better overall picture of a document,
it was decided that instead of returning snippets of a longer
length, we would return the best and second best snippets
from a document with the restriction that those snippets
must come from different paragraphs. While this addition
is difficult to test (see 3), it appears to improve the useful-
ness of the snippets. By providing two different examples
of query terms in context, the user is able to get a better
grasp of the similarities and differences between returned
documents, and thus is served better by having two snip-
pets stitched together. It should be noted that this is only
a viable option if the combined window size is large enough
for two small snippets to be useful.

3. EVALUATION
Snippet generation is inherently difficult to test. A good
snippet is one that helps the user understand the document.
We chose to compare our system to a set of documents and
snippets determined to be “good”.

3.1 Test Corpus
In collaboration with another research team, we created a
corpus to test the quality of our snippet generation. We gen-
erated a set of queries, both single and multiple words, and
searched yahoo.com for those terms. We collected the text

and snippets of the returned documents to serve as our test
corpus. While this does force the assumption that Yahoo!
snippets are the ideal, which may not be the case, this cor-
pus serves as a metric to compare varying implementations
against each other.

We created two versions of the corpus, the first using regular
web search and containing 880 documents and the second
restricted to blog sites, with 1085 documents. In the first
corpus, there appeared to be many documents that did not
actually contain the Yahoo! snippet, making it impossible
for us to generate the same snippet. This was a result of our
use of a naive web scraper. We assumed Yahoo! snippets
for blogs are more likely to be direct extractions from the
text, and therefore created this corpus to give our system a
better chance of generating matching snippets.

3.2 Methods
To evaluate our system with this corpus, we generate our
own snippets from the document text. We then compare
our snippet with the Yahoo! snippet (henceforth called the
“correct” snippet) by quantifying word overlap in three dif-
ferent ways. Each of these use the values x: the number of
terms in our snippet, y: the number of terms in the Yahoo!
snippet, and n: the number of overlapping terms. We define
the metrics as:

Percent Correct = n
x

Percent Missing = y−n
y

Jaccard Coefficient = n
x+y−n

We run this evaluation on all documents in the test corpus
and generate an average value. We then compare variations
of our algorithm to see if they improve our snippets, as com-
pared to the correct snippets.

3.3 Results
Evaluating our system, we get mixed results. The values re-
turned for our three metrics are relatively low, but when an-
alyzed with respect to the test corpus, they are respectable.
Results are higher for the Blog Corpus, proving our assump-
tion that the Web Corpus documents did not typically con-
tain the Yahoo! snippets. This problem may persist to a
lesser extent with the Blog Corpus. Also, it is important
to note that there may be multiple relevant snippets in a
document, and ours may be just as useful as Yahoo! ’s, even
if they are not the same.

The following table shows some of our results:

Metric Web Corpus Blog Corpus
Percent Correct 34.4 % 43.9%
Percent Missing* 75.5 % 69.4 %

Jaccard 17.1 % 22.4 %

* Lower values are better for Percent Missing

Evaluation also proved our optimization techniques. We
were able to generate snippets for nearly 1000 documents



in about 20 seconds. With our base algorithm, single docu-
ments took seconds to complete.

4. CONCLUSIONS
While testing snippet quality is quite difficult, we believe
we have been successful in our goals for this work. We con-
sistently create coherent snippets containing query words
with context around them that appear to be useful. Our
algorithm is unique in that it allows for dynamically sized
snippets, preventing misleading pieces of text from being
returned. The algorithm is also very easy to change and
improve by simply adding feature functions and varying the
parameters (maximum and minimum window size, decre-
ment size, etc). Most importantly, we return snippets very
quickly, making it feasible to use this algorithm in a live
search engine.

APPENDIX
Example search results, with document title and snippet
generated by our system:

query: school

China’s “robber king” gets life for crime
school
... thieves and rapists in a school for crime has
been sentenced to life in prison ... The 68-year-
old rogue charged fees to school dropouts to
teach them his crime ...

query: birthday

Ronald Reagan Suffering From Alzherimer’s
... noticeable at Reagan’s own birthday celebra-
tion when he mistakenly repeated several lines
during a ... then-former British Prime Minister
Margaret Thatcher said at Reagan’s 82nd birth-
day celebration ...

Simpson Spends Birthday in Jail
... Simpson is spending his 47th birthday today
in jail ... No bail on his 47th birthday. We’re
told that he has received hundreds ...

query: celebration

Britain Celebrates V-E Day, Ugly Incidents
in Germany
... V-E Day celebration marking the 50th an-
niversary of the end of World War II in ... one
long celebration- a celebration of the end of
the war in Europe ...


