
Implementing and Testing The PageRank Citation Ranking

Whitney Fish
Pomona College

wjf02006@mymail.pomona.edu

Dan Feblowitz
Pomona College

djf02007@mymail.pomona.edu

ABSTRACT
This paper presents an implementation of Google’s PageR-
ank citation ranking algorithm. PageRank is a form of link
analysis that assigns each page in the corpus a score repre-
senting its importance. A page’s score is derived recursively
from the scores of pages that link to it. Using these scores,
an IR engine can re-rank results to favor more important
pages, which are likely to be more useful to the user. In
this paper, we provide a means of calculating PageRank for
a set of research paper abstracts. For testing, we integrated
it into a TF-IDF-based IR engine that searches these ab-
stracts. We produced an automated tester that generates
a query and two sets of approximately relevant results for
every document in the corpus. We tested our engine’s abil-
ity to retrieve these results given these queries, and found
that PageRank does not consistently improve performance
in this context.

1. INTRODUCTION
The world wide web is an immense and heterogenous space
of documents. According to the website http://www.world-
widewebsize.com/, which provides daily estimates of the size
of the web, on the day this paper was written, the web con-
tained at least 22.48 billion pages. Those pages vary drasti-
cally in terms of content, quality and authority - from spam
advertisements to the home pages of the New York Times,
Wikipedia, and Google.

This difference causes problems for IR engines that rank
their results based only on measures of similiarity between a
document and query. It is likely that a spam page designed
to match a certain type of query scores higher on a simil-
iarity metric than does a well-established site with useful
information. For that reason, it is useful to have some idea
of the importance of a page on the web.

Fortunately, corpora like the World Wide Web or collections
of academic papers have a link structure that can be mined
for that information. The number of links to and from a page

seems to correspond to the page’s influence – think of the
number of pages reachable from or linking to the New York
Times home page as opposed to a spam page. However,
outlinks are replicable features of a page – it is easy for
site owners to generate more – and numbers of links vary,
depending on a page’s size and content, in ways that may
not reflect the page’s importance. Further, a determined
webmaster can even replicate inlinks by creating a dummy
page that links to his site.

In order to address these problems and others, Brin et al.
[2] introduced PageRank. PageRank is a score for the im-
portance of a web page calculated recursively based on the
scores of the pages that link to it. Each link accessible from
a given page recieves an equal fraction of the linking page’s
score. Thus, merely having many outlinks does not allow a
page to overly influence other page’s scores. With PageR-
ank, a link from the New York Times home page is worth
more than a link from an isolated personal home page, and a
spam page cannot improve its standing by adding outlinks or
keywords. Even links from dummy pages do not bias PageR-
ank, since a page generated to give out links will have few,
if any, inlinks, and therefore no rank to distribute. Thus,
PageRank avoids many of the pitfalls that made previous
forms of citation analysis inappropriate for the web.

2. ALGORITHM DESCRIPTION
The base assumption behind PageRank is that a document’s
importance can be derived from the importance of the doc-
uments that link to it. An effective way to conceptualize
this idea is the Random Surfer model. In this model, an
average user is randomly navigating through the dataset by
clicking on links. The PageRank of a document is the prob-
ability that this user will be looking at that document at
some time in the future. This basic model has a couple of
problems. First, the user has no defined action if it reaches
a document with no outlinks (a “dangling node”). Second,
if the user only navigates along links, there is a chance of
getting stuck indefinitely in small sets of documents that
link only to each other (“rank sinks”). The first issue can be
solved by having the user jump randomly to any document
in the corpus when it reaches a document with no outlinks.
The second requires allowing the user to have a fixed chance
of “getting bored” and jumping to a random document. [2]

From the random surfer model, PageRank can be näıvely
calculated by building a matrix, G, with both dimensions
equal to the number of documents, n. Each entry G[i, j] is



set to the chance of the random surfer moving from doc-
ument i to document j. Once G has been constructed, it
can be raised to a power, generally on the order of 100, and
the values in each column are guaranteed to converge to a
single value – that document’s true PageRank. Convergence
of the matrix can be proven as long as the chance of a ran-
dom jump is greater than zero. The rate of convergence
can be controlled somewhat by varying the chance of a ran-
dom jump – a higher chance of a random jump will result
in the algorithm converging with fewer multiplications. As-
suming a relatively sparse link structure, a 15% chance of a
random jump will lead to convergence in 50-100 iterations,
even when the dataset is very large. (The rate of conver-
gence is acutally independent of the number of documents).
[2]

2.1 The Power Method
Unfortunately, multiplication of n× n matrices is computa-
tionally expensive – the best algorithms are slightly above
O(n2.3), and storage requires O(n2) memory. This is fine
for small corpora, but runs into problems on larger corpora
without getting anywhere close to web-scale. For example,
an early näıve implementation ran on one thousand docu-
ments in about five minutes but ran into memory issues soon
thereafter. One way that the algorithm can be improved is
the power method, given below.

πk+1 = πk ∗G 1 2

Since all the rows of G will approach the same value in the
basic algorithm, the power method only saves a single row
of G, π, and multiplies it by G repeatedly. Dropping the
rest of G does not effect the convergence of π to our desired
PageRank vector. It provides significant benifits, because
now instead of storing two n×n matrices, the algorithm only
needs to store one matrix and the vector π. In addition, the
complexity of the multiplication of a vector by a matrix is
O(n2), a noticeable saving.

2.2 Implementation Details
The multiplication of a vector by a large dense matrix still
becomes time- and space-prohibitive on large datasets. For-
tunately, the web’s link structure is extremely sparse, and
based on this fact, linear-algebraic manipulation of the power
method can yield a far more efficient algorithm. To start, G
can be split into three seperate matrices:

G = H +D + E

Here, H contains only the chance of the surfer moving from
one document to another along a link. D contains only the
chance of the surfer making jumps because it has reached
a document with no outlinks. Finally, E contains only the
chance of the surfer jumping to a document as a result of
getting bored (a random jump, not along one of the doc-
ument’s links). H will be very sparse. Using the power
method and the decomposed version of G we can now write:

1Superscripts here indicate the number of iterations (i.e., πk

means “pi after k iterations”). They are NOT exponents.
2For the sake of readability and easier understanding, from
here forward, we have omitted vector transpositions. For
the linear-algebra inclined, the full sequence of equations is
included at the end of the document.

πk+1 = α ∗ πk ∗H + α ∗ πk ∗D + (1 − α) ∗ πk ∗ E

where α is the inverse of the probability of the surfer get-
ting bored and making a random jump. Following Brin et
al., we use a value of 0.15 for α. This results in conver-
gence within about 60-100 iterations. [2] Notice that the
first term now involves multiplying a sparse matrix by a
vector. Using a sparse matrix library from the Colt project
(http://acs.lbl.gov/˜hoschek/colt/), the sparse matrix can
be held in memory and the multiplication can be carried
out quickly.

Speeding up the calculations now requires reducing the final
two terms in the equation. With this in mind, we define two
new vectors: Let e be a vector of all 1’s with length equal
to the number of documents. Let d be the dangling node
vector, where entry d[i] = 1 if document i has no outlinks
and d[i] = 0 otherwise. Using these definitions, we can now
re-write D and E as the multiplication of two vectors:

D = d ∗ e/n
E = e ∗ e/n

Substituting these values into the current equation results
in the power method looking like:

πk+1 = α ∗ πk ∗H + α ∗ πk ∗ d ∗ e/n+ (1− α) ∗ πk ∗ e ∗ e/n

which simplifies to:

πk+1 = α ∗ πk ∗H + (α ∗ πk ∗ d+ (1 − α) ∗ πk ∗ e) ∗ e/n

PageRank still represents probabilities, so the entries of πk

must sum to 1. This also implies that πk ∗ e = 1. With this
fact we can reach a final form:

πk+1 = α ∗ πk ∗H + (α ∗ πk ∗ d+ (1 − α)) ∗ e/n

[1]. As discussed above, α ∗ πk ∗H can be computed in an
acceptable amount of time – on the order of the number of
links rather than the number of documents squared. As for
the rest of the equation, the vector multiplication is O(n)
plus another O(n) operation to add the value to each entry
in π. The equation also works well intuitively. α ∗ πk is the
sum of the current PageRank of documents with no outlinks,
which needs to be distributed evenly across all PageRanks,
and 1−α is the probability that the surfer will make a ran-
dom jump, which also needs to be distributed evenly across
all PageRanks. In terms of memory, between iterations, we
only need to store two O(n) vectors and a sparse matrix. On
the same machine that took 5 minutes to calculate PageR-
ank for 1,000 documents using the unoptimized algorithm,
this algorithm allowed for 30,000 documents in less than 30
seconds.

3. RESULTS
In order to test the effect of PageRank on our search engine,
we developed EvalGen, an automated generator for queries
and sets of approximately relevant results. For each docu-
ment in the corpus, EvalGen converts the title to a query
and generates two relevant result sets. The first result set
includes all documents that have at least one author in com-
mon with the original document. The second includes the



original document and all documents cited therein.

Using EvalGen, we produced a query and both relevant re-
sult sets for each of the 29,555 documents in the KDD 2003
corpus. We measured precicion at 20, recall at 20, MAP,
and R-Precision for each relevant result set both with and
without PageRank. For each of these four experiments, we
took the average of each metric across all 29,555 queries.
The results are given in Table 1.

On average, when the set of papers sharing an author with
the query document was assumed to be relevant, re-ranking
documents using PageRank caused MAP to decrease by
6.10% and R-Precision to decrease by 5.72% when compared
with the raw TF-IDF ranking. However, when the set of
papers linked to by the original document was assumed to
be relevant, MAP increased by 3.32% and R-Precision by
3.11%.

We were surprised by the small magnitudes of these changes,
and that PageRank hurt performance for the authors-based
result set. We expected PageRank to improve performance
consistently, though we did anticipate a smaller increase for
the author-based result set than for the links-based one.
This is because using links-based relevant results guarantees
that each relevant result has at least one in-link. PageR-
ank is derived from in-links, so link-based relevant results
will inherently have some correlation to PageRank. Still,
these results are inconsistent with our expectations. There
are a number of factors that may have contributed to this
inconsistency.

First, Brin et al. [2] note that“The benefits of PageRank are
the greatest for underspecified queries.”When the amount of
information contained in a query is limited, PageRank helps
push the most influential results to the top of the list, and it
is likely that a user who provides an underspecified query is
thinking of such a common case. Our queries, on the other
hand, were full titles of research papers, which may provide
enough specificity to diminish the benifits of PageRank.

Second, it is possible that the sets generated by EvalGen are
not a good representation of the actual results relevant to a
given query. The validity of these sets rests on certain as-
sumptions – namely, that authors write groups of papers on
generally related topics, and that papers usually cite other
papers on related topics. If these assumptions do not hold
over the corpus, the sets produced by EvalGen may not be
reliable, though we are unsure how this may have caused
PageRank to hurt search performance.

Most importantly, PageRank was designed with the web in
mind rather than academic papers. It is calculated in such
a way to compensate for variation in length and number
of links, and to address variation in quality. Research paper
abstracts are far more consistent along these dimensions – all
of them represent content that has been peer-reviewed and
accepted as having a certain level of quality. Web pages,
on the other hand, can be created and published with no
oversight. Since the quality of the KDD documents was
uniform and high, we believe PageRank was not as useful
for differentiating them as it would have been for web pages.

4. CONCLUSIONS
In this paper, we described an implementation of the PageR-
ank citation ranking which we applied to a corpus of resarch
paper abstracts. We automatically generated queries from
the titles of papers and approximations of relevant results
sets based on links and common authors. We found that rel-
ative to raw TF-IDF ranking, PageRank decreased perfor-
mance slightly for the author-based results set and increased
it slightly for the link-based set.

Further research would be useful to explain why this was
the case. An inquiry could also be made into generating
different queries and relevant results sets. Testing our im-
plementation on a web corpus could confirm whether or not
the confusion arose from the inherent quality differences be-
tween web pages and scientific paper abstracts.

5. APPENDIX
Full equations from Section 2:

π(k+1)T = π(k)T ∗G
G = H +D + E
π(k+1)T = α ∗ π(k)T ∗H +α ∗ π(k)T ∗A+ (1−α) ∗ π(k)T ∗E
D = d ∗ eT /n
E = e ∗ eT /n

π(k+1)T = α ∗ π(k)T ∗H + α ∗ π(k)T ∗ d ∗ eT /n+

(1 − α) ∗ π(k)T ∗ e ∗ eT /n

π(k+1)T = α∗π(k)T ∗H+(α∗π(k)T ∗d+(1−α)∗π(k)T ∗e)∗eT /n

π(k)T ∗ e = 1
π(k+1)T = α ∗ π(k)T ∗H + (α ∗ π(k)T ∗ d+ (1 − α)) ∗ eT /n

6. REFERENCES
[1] A. N. Langville and C. D. Meyer. The use of the linear

algebra by web search engines, 2004.

[2] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web,
1999.



Table 1: Performance
Relevant Results Precision@20 Recall@20 MAP R-Precision

With PageRank By Authors 0.0986 0.224 0.185 0.195
By Links 0.110 0.388 0.323 0.324

No PageRank By Authors 0.0994 0.230 0.197 0.207
By Links 0.0971 0.368 0.313 0.315

Percent Change By Authors -0.883 -2.33 -6.10 -5.72
By Links 13.5 5.54 3.32 3.11


