
Developing a Graphical User Interface and Java Server
Using Google Web Toolkit

Charlotte Smail, Joel Detweiler
Computer Science Department

Pomona College
185 E. Sixth Street

Claremont, California 91711
smail.charlotte@gmail.com, joel.detweiler@gmail.com

ABSTRACT
The leading search engines in the field of information re-
trieval, namely Google and Bing, have simple interfaces. A
common thread between these is the way in which they dis-
play the results of a query. The results are displayed as
a ranked, descending list of documents each with a corre-
sponding snippet summary specific to that query. This pa-
per provides an explanation of a simple online user interface
and Java server built for the search engine Bursti. The user
interface is modeled after the interfaces of the aforemen-
tioned search engines and is built to maximize ease of use
while maintaining full functionality. In addition, this pa-
per describes the process of creating such an interface with
Google Web Toolkit (GWT), a software development frame-
work useful for writing AJAX online applications with the
Java programming language.

1. INTRODUCTION
The design and functionality of a user interface is a crucial
part of a piece of software. A well designed graphical user
interface (GUI) reduces the learning curve of software and
frees the user from learning complicated commands. With
the addition of an interface, a user searching with Bursti
no longer has to enter queries into the console. Before the
addition of the GUI, the system displayed the retrieved re-
sults in an unaccessible format. It is easy for computers to
represent a series of results as a list of document IDs with
their corresponding blocks of text. This representation is
not as easily understood by humans. The interface of Bursti
acts as a buffer for users that do not have a deep enough
understanding of the underlying system to use it. Rather,
it displays results in a readable and accessible format. The
goal when building an interface is to maximize usability for
the end-user, regardless of their amount of technical knowl-
edge. Thus, the interface of a search engine can be evaluated
by its ability to present relevant results in a way such that

the user can find them faster.

2. BACKGROUND
As of late, the Web has been on a trajectory towards highly
interactive online applications. GWT is a tool that is capa-
ble of creating such applications. Many new web applica-
tions, like Google Docs for example, act more like desktop
applications than they have in the past. They are comprised
of “widgets” that are easily manipulated by the user. A wid-
get can be defined as a portable chunk of code that can
stand alone. Widgets can be embedded into a larger chunk
of code to form an entire program. Within our GUI, an ex-
ample of a widget is the search box along with the search
button. GWT enables the programmer to use widgets to
create a client/server application in which the browser in-
teracts with a javascript application. The server acts as the
“the cloud” that stores necessary information for the system.

Incidentally, the technologies used to create a webpage with
GWT have been around for many years. These include cas-
cading style sheets (CSS), Javascript, HTML, JSON, etc.
GWT utilizes browser technologies that are commonplace
in the world of web development. Furthermore, GWT is
unique in the sense that it combines all these commonly
used technologies into one tool. It allows the programmer
to build applications solely with the Java programming lan-
guage. Thus, many programmers could use it without learn-
ing browser technologies. When using this tool, it is usually
necessary to edit the CSS to achieve a particular aesthetic
quality and do detailed formatting within the pages. The
learning curve for such tools, like CSS and HTML for exam-
ple, is not particularly steep. In this way, GWT is able to
combine the necessary browser technologies and utilizes the
power of javascript to create web applications.

3. GUI AND SERVER DESIGN
3.1 An Ideal Interface Design For Bursti
There are many different methodologies for creating effec-
tive graphical user interfaces. On one end of the spectrum
lies maximizing user control. This is achieved by providing
many options for the user. An example would be a search
engine that has the capability to search by various cate-
gories, in a variety of languages, or with multiple types of
media. While this approach benefits the kind of user with
search engine skills, it also runs the risk of overloading the



user with too many options. This can decrease efficiency. In
some cases, it is better to create a sleek, simple interface.
The opposite end of the spectrum of GUI design is to min-
imize user control. The interface of Bursti is simple in its
design but mains the functionality of the underlying system.

3.2 Using GWT to Create the Interface
GWT allowed us to easily complete our design goals using
the object-oriented programming language Java. Google’s
widgets, like search boxes and search buttons, were used to
design our ideal search engine interface. Each“panel”, which
can be thought of as a section of one page, encapsulates par-
ticular functions of the interface. This encapsulation allows
us to move panels around according to how the user inter-
acts with the system. For example, when a query is entered,
the logo and search box portion of the webpage is moved up
to the top of the page and the results are displayed in their
place.

Once a search is performed, a request is sent to a PHP script
that accepts a query, a start index, and an end index. The
start and end indices indicate how many results the user
wants on a single page. If the query is the original search, a
desired number of results from the beginning of the search
results is requested. If the user has clicked a next or previ-
ous results page, however, the GUI only requests documents
from the current subset of total results. The PHP script
interacts with the Java server, which processes the query,
performing a complete search while only returning results
between the given indices. Results are then displayed in a
list format. The GUI receives plain text containing doc-
ument titles, document URLs, and corresponding snippets.
This text is capable of then being parsed, in order to present
the document titles, URLS, and snippets in their ranked or-
der.
Stored search results can be displayed within a series of pan-
els. Titles are created as html links to the corresponding
URL, while the snippets are presented as plain text to de-
scribe each document. Panels containing each of these ob-
jects are then added to a results panel in ranked order, set
to be visible once a search is performed. The results panel
displays documents in a vertical format, making it easy for
the user to visualize the ranked results of their search.
The presentation of results is designed to be aesthetically
pleasing for the user using CSS. We opted for documents to
have bold, black titles that could stand out clearly next to
the snippets. They also highlight in yellow when scrolled
over so that the user can easily understand that the title
is a link to the document’s URL. Each snippet is presented
in smaller, normal text directly below its document’s title.
In doing so, it should be clear that the snippet is there to
describe the document and how it relates to their query.

: Figure 1

Our search page was also made to handle the user’s requests
for different information. The search, next, and previous
buttons were created to react to the setting at the time of
the click. The search button will always perform a new
search, clearing the older results if the search box is cur-
rently empty. Additionally, the next button is set to always
give the next set of results for the most recent query. If
there are no more results after the current set for a query,
the GUI will display a message stating so, remove the next
button, and keep the previous button. Similarly, the pre-
vious button is set to not appear unless there is a previous
page of results. The previous button, as expected, always
returns the user to the most recent page of search results for
the current query.

4. RESULTS
A GUI is difficult to evaluate in the traditional sense, as the
GUI is largely tailored to appeal to individual users. The
quality of an interface is difficult to measure with standard
metrics because of its subjective nature.

Our first goal for the search engine was to be able to process
queries and display results in a short amount of time. Thus,
we evaluated the time it took Bursti from the moment a
query was submitted until results were displayed. Over a
significant number of tests, we found that a single search
took an average of 3.29 milliseconds to complete. This is a
much smaller time than a human can recognize which indi-
cates that our system returns results almost instantaneously.
We conclude that we completed our goal of creating a GUI
that processes a query and displays results for the user in a
trivial amount of time.

The appeal of the GUI itself, rather than the entire system,
however is more difficult to analyze using concrete metrics.
Our goals for the GUI were to have a sleek display that
limited the users options while maintaining functionality.



We successfully completed an interface with simple func-
tions such as fetching the next set of results and going back
to previous ones. We also desired to maintain functionality,
with the ability to perform a new search at any time and to
traverse the extent of the results. We were largely successful
in this regard, as the user can always perform a new search
and all results are accessible at any given time. The one
fault we found was that the back button within the browser
does not function within the context of our GUI. We do not
provide support for saving results after a user has visited
a page and wants to revisit the results they just recieved.
Because it dynamically changes the page using javascript,
their is no unique url to a set of search results or a certain
page. This lacks some of the functionality of an ideal GUI,
which was our goal. In order to fix this issue, a different
page would have to be generated each time the user changes
something, rather than changing the current page. This is a
complicated process that would drastically change our cur-
rent system, and thus is very difficult to implement within
our existing code.

We were able to evaluate the aesthetics and functionality
of Bursti by informally surveying some users. They all com-
mented that they wished they could use the back button
within their browser to return to results after clicking on a
result. Additionally, some users stated that it was unclear
that document titles were also links to their associated text.
However, the majority of user comments showed approval
for the aesthetics of the Bursti interface. Users appreciated
the simple layout and presentation of results, describing it
as easy to use and straightforward. On the whole, the in-
formal survey showed that we have met our goal. Bursti is
a simple search engine that is straightforward and easy to
use, making it appealing to the user that are looking for a
simple and effective tool for searching.

5. CONCLUSION
In recent times, the demand and popularity for customiz-
able yet simple web applications has risen. In response,
Google has created a tool that harnesses simple yet powerful
browser technologies such as HTML, CSS, and Javascript.
In the creation of a web application with GWT, all of these
tools can be used indirectly with the programming language
Java. This is a big step for web application design. All
of the browser technologies, like the ones mentioned above
and countless others, are necessary to make web applica-
tions, but there is no simple way to interface them together.
GWT is not a perfect way of doing so, but Google has at
least cobbled together smaller tools to create a larger more
powerful one that is actually quite capable of creating good
web applications. Once we conquered the steep learning
curve that is GWT, we were able to successfully create a
simple search engine interface that met our goals with our
existing knowledge of Java. Our GUI for Bursti met our
design goals, as it was shown to be quick and appealing to
the user.


