
Getting Started With
Handy Boards and Handy Logo

by

Robbie Berg
Department of Physics

and

Franklyn Turbak
Department of Computer Science

Wellesley College

The Handy Board and Handy Logo were developed by members of the Epistemology and
Learning Group at the MIT Media Lab as part of the Programmable Bricks project. For more
information please see

http://lcs.www.media.mit.edu/groups/el/elprojects.html

2. Programming Your Handy Board

You program your Handy Board using a special version of Logo called Handy Logo. The current
version of Handy Logo is a Java application that you launch by double-clicking on the
HandyLogo.jar file. The basic Handy Logo interface is shown in Figure 3.

Figure 3 - The Handy Logo Window

To send an instruction to the Handy Board, simply type the instruction in the Command Center. For
example, type beep in the Command Center and press Return. The instruction will be sent (via the
serial cable) to the Handy Board, which will execute the command—and you should hear a beep.

It is not uncommon to receive a "Handy Board not connected" message when you attempt to send
an instruction to the Handy Board. Often this message occurs because the connections between the
computer and the Handy Board are not correct or because the Handy Board is not receiving adequate
power (e.g. it is turned off, or the battery is low). If you get this message, make sure the Handy Board is
turned on and the telephone cable is firmly connected to both the Handy Board and the SIBC. A sure
sign of a good connection is that the yellow CHARGE light on the SIBC is on. Another source of this
error is that two applications are competing to use the serial port. This frequently happens when you
have launched more than one instance of Handy Logo. Make sure that there is only one Handy Logo
window (or task-bar icon) before proceeding. Even if you have checked all of the above, you may still
encounter some spurious "Handy Board not connected” messages. Often, simply turning the power off
and on and resending the instruction will (eventually) result in a success. If not, try another Handy
Board and/or SIBC.

You can type any Handy Logo instruction in the Command Center, and it will be immediately
transferred to the Handy Board and executed. Below we give examples of some simple commands. A

full listing of Handy Logo commands is included in a separate handout called The Handy Logo
Language Reference.

Plug motors into ports A and B on the Handy Board, then try these commands (pressing the Return

key after each command):

Now plug a touch sensor into digital switch port 7 and a light sensor into analog sensor port 0, and

try these commands:

2.1 Writing Handy Logo Programs

The Command Center is convenient for executing short commands, but more complex robotic

behavior is usually specified via programs consisting of procedures. A Logo procedure allows you to

give a name to a sequence of commands and then execute the sequence by invoking the command. For

example, here is the definition of a Logo procedure that gives the name double-beep to the three

commands beep wait 2 beep:

to double-beep
beep wait 2 beep

end

Procedures allow you to extend the “vocabulary” of commands that Logo understands with your own

commands. A collection of procedures is called a program.

You can write a Handy Logo program by using any text editor to create a file that contains any

number of procedure definitions. Examples of text editors are TextPad (PC), NotePad (PC), BBedit

a, on Turns on the motor plugged into port A

rd Reverses direction of the motor

off Turns off the motor

onfor 20 Turns on the motor for 2 seconds

repeat 4 [onfor 10 wait 10] Turns motor on and off 4 times

ab, on Turns on motors in both ports A and B

b, rd Reverses direction of motor in port B

ab, off Turns off both motors

waituntil [switch 7] onfor 20 Turns on motor when touch sensor pressed

on waituntil [switch 7] off Turns off motor when touch sensor pressed

on waituntil [sensor 0 < 100] off Turns off motor when light sensor blocked

(Mac), and Emacs (PC, Mac, Linux). Since Handy Logo programs must be simple text files it is
important that you not use word processing programs such as Microsoft Word to create your programs.

In order to “teach” the Handy Board the procedures in your program, you need to download your
program file to the Handy Board. To do this, first type the name of your file into the text box to the
right of the download button below the Command Center. Alternatively, you can select the name of a
file using the browse button. (Note that if you do not use the browse button to select a file, then the file
to be downloaded must be in same directory as the HandyLogo.jar file.) Then click on the download
button, which sends the file to the Handy Board. If your file contains the double-beep procedure, it
will be downloaded to the Handy Board—but not executed yet. To execute your new procedure, type
double-beep in the Handy Logo Command Center and press Return. Notice that the Handy
Board’s green light goes on while the Handy Board is executing the program. (Note that you can only
download procedures when the green light is off—that is, when the Handy Board is not executing a
program.)

2.2 Using the Handy Logo Menus

Turning the user knob on the Handy Board scrolls through a list of menu items. You can specify the
menu items using menu declarations at the top of your program. For example, here are three menu
declarations:

menu 1 [double-beep]
menu 2 [double-beep wait 2 double-beep]
menu 3 [a, on]

The square brackets associated with a menu item may contain any sequence of commands. When you
download a program with these menu declarations, you can scroll through them with the user knob. You
may declare up to seven menu items.

You can execute the commands in the currently displayed menu item by pressing the white START
button on the Handy Board. For example, if you scroll to menu item 1 (double-beep) and press
START, the double-beep procedure will be executed. An asterisk will appear on the screen to indicate
that the procedure is running. Pressing the white STOP button will immediately stop all procedures from
running.

Menu items are important because they allow you to execute programs even when the Handy Board
is not connected to a desktop computer. This capability is essential for creating “autonomous” robots.
You can now take the Handy Board anywhere!

2.3 Using the Handy Board’s LCD screen

You can information on the Handy Board’s screen using the print instruction. For example try

Being able to view sensor data on the screen is incredibly useful in trying the figure out what is
going on with your robot, so useful in fact that Handy Logo has a “built-in” ability to view the current

print “hello displays the word “hello” on the screen

print [hello world] displays the phrase “hello world” on the screen

loop [print sensor 0 wait 1] displays the value of the sensor plugged into
analog sensor port 0, updated 10 times a second

values of all seven analog sensor ports at once: If you dial the user knob all the way past menu item
(7) you will see these sensor values displayed on the screen.

The say instruction allows you to display numbers and text in the Monitor Window on the right side
of the Handy Logo window.

say [hello world] displays the phrase “hello world” in the Monitor
Window

loop [say sensor 0 wait 1] displays in the Monitor Window the value of the
sensor plugged into analog sensor port 0, updated
10 times a second

2.4 Some useful programming idioms

Procedures can accept arguments using Logo’s colon syntax:

to arf :times
ab,
repeat :times [on wait 20 rd]

end

Procedures may return values using the output primitive:

to go
ab,
repeat third [on wait 10 rd]

end

to third
if sensora < 20 [output 1]
if sensora < 50 [output 2]
output 3

end

The go procedure will execute 1, 2, or 3 times depending on the value of
sensor A.

Data recording and playback

There is a single global array for storing data which holds 8K two-byte numbers. There is no error
checking to prevent overrunning the data buffer. The essential primitives for data taking are:

record value - records value in the data buffer and advances the data record pointer.

recall value - reports the value of the current data point and advances the data playback pointer.

erase - Resets the value of the record pointer to zero.

resetr - Resets the value of the recall pointer to zero.

For example the procedure take-data can be used to store a number of data points recorded by
sensor A once every second:

to take-data :number
erase
repeat :number [record sensora wait 10]

end

while the procedure playback-data can be used to send the recorded back to a host computer
over the serial line

to playback-data :number
resetr
repeat :number [send recall sensora]

end

Multi-Tasking

Handy Logo has a number of different primitives for supporting multitasking. For example

For example, suppose a motor is connected to port A and a touch sensor to digital sensor port 7.
Note the behaviors obtained with the following different procedures:

to wiggle-and-beep-when-bumped
forever [a, onfor 2 rd]
when [switch 7] [beep]

end

to wiggle-until-bumped
forever [a, onfor 2 rd]
waituntil [switch 7]
stoprules ; stops the “forever” rule from running
beep

end

to wiggle-and-beep
forever [a, onfor 2 rd]
every 10 [beep]

end

forever [action] launches a process to repeatedly execute action

when [condition] [action] launches a process to repeatedly test condition and
execute action when it is true

every [time] [action] launches a process to execute action every time
tenths of a second

stoprules stops all running processes

Edge-triggered vs. level-triggered logic

Although the waituntil primitive is “level-triggered” the following example shows how to use
waituntil to trigger an action on the edge of an event.. Assume a touch sensor is plugged into the
digital sensor # 7 port.

to beep-once-per-press
waituntil [not switch 7]
waituntil [switch 7]
beep
beep-once-per-press

end

Alternatively, the when primitive is inherently edge-triggered, so another way to do this is simply:

to beep-once-per-press
when [switcha] [beep]

end

3. Handy Logo Sampler

A Simple Program

Here’s a simple program written this summer by two 10 year old kids who wanted to build a dancing
robotic creature:

to dance
cha-cha-cha
go-round
shake-it

end

to cha-cha-cha
repeat 4 [back-and-forth]
ab, off

end

to back-and-forth
ab, thisway onfor 3
beep
ab, thatway onfor 3
beep

end

to go-round
a, on thisway
b, on thatway
beep wait 1 beep wait 1 beep
wait 60
ab, off

end

to shake-it
a, thisway
b, thatway
ab,
repeat 10

[beep
onfor 1
beep
rd
onfor 1
rd]

end

The Wandering LEGObug: An example with sensors

The LEGObug, is a creature with two motors connected to its two rear wheels. It also has two touch
sensors connected to two “whiskers” positioned on either sides of its head and two light sensors that
serve as “eyes”. Detailed plans for building the LEGObug are available at the following URL:

http://lcs.www.media.mit.edu/people/fredm/projects/legobug/

The procedure seek shown below causes the creature to be attracted to bright light. It assumes that
the light sensors are plugged into the Handy Board’s sensor-ports “0” and “1”. The light sensors have
the property that the greater the amount of light that hits them, the smaller the sensor value that is
produced. (In typical indoor lighting the light sensors might give readings in the 15 - 30 range, if you
shine a flashlight on them, they will produce a reading in the 1 - 5 range. It takes almost complete
darkness to produce a reading of 255.) The program below causes the creature to move forward if bright
light hits the light sensor plugged into sensor-port “0”

to seek
loop [

ifelse (sensor 0) < 10
;N.B. the parentheses are essential here!!
[go-forward]
[stop-motors]

]
end

to go-forward
ab, on thisway

;the motors are each hooked up so that the
;“thisway” direction causes them to drive forward

end

to stop-motors
ab, off

end

As an exercise you might try making creatures that run away from the dark, or ones that turn toward
a bright light.

The procedure wander shown below causes the LEGObug to drive straight until a whisker bumps
into an obstacle. (It assumes that the touch sensors are plugged into the two of the digital sensor-ports.
(the left touch sensor is plugged into digital sensor-port “7” and the right touch sensor is plugged into
digital sensor-port “8”) In an attempt to avoid the obstacle, it the creature backs up a bit, turns a small
(random) amount and continues to drive forward.

to wander
go-forward
waituntil [or (touch-left?) (touch-right?)]
ifelse touch-left?

[back-up turn-right]
[back-up turn-left]

wander ;note tail recursive alternative to loop
end

to go-forward
ab, on thisway

end

to touch-left? ;touch-left reports “true” if the sensor
;plugged into digital sensor-port “7” is pressed

output switch 7
end

to touch-right? ;touch-right reports “true” if the ;sensor
plugged into digital sensor-port “8” is pressed

output switch 8
end

to turn-right
;turns right for a random amount of time between 0 and
;5 seconds.
b, off 5
a, thisway onfor (random 50)

end

to turn-left
a, off
b, thisway onfor (random 50)

end

to back-up
ab, thatway onfor 20

end

