
2/9/17	

1	

CS52 MACHINE

David Kauchak
CS 52 – Spring 2017

Admin

!  Midterm 1
!  Assignment 3
!  Assignment 4

Examples from this lecture

http://www.cs.pomona.edu/~dkauchak/classes/cs52/examples/cs52machine/

Computer internals

2/9/17	

2	

Computer internals simplified

What does it stand
for?

What does it do?

CPU RAM

What does
it stand for?

What does
it do?

Computer internals simplified

(Central Processing
Unit,
aka “the processor”)

CPU RAM

(Random Access
Memory,
aka “memory”
or “main
memory”)

Does all the work! Temporary storage

Computer internals simplified

CPU RAM

hard drive

“the computer”

Why do we need a hard drive?

Computer internals simplified

CPU RAM

hard drive

“the computer”

-  Persistent memory
-  RAM only stores data while it has power

2/9/17	

3	

Computer simplified

hard drive

media drive

CPU RAM

“the computer”

display

network

input devices

Inside the CPU

CPU

processor

…

registers

processor: does the work

registers: local, fast memory slots

Why all these levels of memory?

Memory speed

operation access time times slower
than register
access

for
comparison
…

register 0.3 ns 1 1 s

RAM 120 ns 400 6 min

Hard disk 1ms ~million 1 month

google.com 0.4s ~billion 30 years

Memory

RAM 010101111000101000010010 …

What is a byte? ?

2/9/17	

4	

Memory

RAM 01010111 10001010 00010010 …

byte = 8 bits
byte is abbreviated as B

My laptop has 16GB (gigabytes) of memory. How many bits is that?

Memory sizes

bits

byte 8

kilobyte (KB) 2^10 bytes = ~8,000

megabyte (MB) 2^20 =~ 8 million

gigabyte (GB) 2^30 = ~8 billion

My laptop has 16GB (gigabytes) of memory. How many bits is that?

Memory sizes

bits

byte 8

kilobyte (KB) 2^10 bytes = ~8,000

megabyte (MB) 2^20 =~ 8 million

gigabyte (GB) 2^30 = ~8 billion

~128 billion bits!

Memory

RAM
01010111
10001010
00010010
01011010
…

Memory is byte addressable

address

0
1
2
3
…

2/9/17	

5	

Memory

RAM
01010111
10001010
00010010
01011010
…

Memory is organized into “words”, which
is the most common functional unit

address

0
1
2
3
…

Memory

RAM
10101011 10001010 00010010 01011010
11001011 00001110 01010010 01010110
10111011 10010010 00000000 01110100
…

Most modern computers use 32-bit (4 byte)
or 64-bit (8 byte) words

address

0
4
8
...

32-bit words

Memory in the CS52 Machine

RAM
10101011 10001010
00010010 01011010
11001011 00001110
…

We’ll use 16-bit words for our model (the
CS52 machine)

address

0
2
4
...

16-bit words

CS52 machine

CPU

processor

registers

ic

r0

r1

r2

r3

instruction counter
(location in memory of the next
 instruction in memory)

holds the value 0 (read only)

-  general purpose
-  read/write

2/9/17	

6	

ic

r0

r1

r2

r3

instruction counter
(location in memory of the next
 instruction in memory)

holds the value 0 (read only)

-  general purpose
-  read/write

CS52 machine instructions

CPU

processor

registers

What types of operations might
we want to do (think really basic)?

CS52 machine code

Four main types of instructions
1.  math
2.  branch/conditionals
3.  memory
4.  control the machine (e.g. stop it)

instruction name arguments

2/9/17	

7	

instruction name arguments

instruction/operation name
(always three characters)

instruction name arguments

operation arguments
R = register (e.g. r0)
S = signed number (byte)

instruction name arguments

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r1 r2 r3

What does this do?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

2/9/17	

8	

add r1 r2 r3

r1 = r2 + r3

Add contents of registers r2 and
r3 and store the result in r1

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r2 r1 10

What does this do?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r2 r1 10

r2 = r1 + 10

Add 10 to the contents of
register r1 and store in r2

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

add r1 r0 8
neg r2 r1
sub r2 r1 r2

What number is in r2?

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

2/9/17	

9	

add r1 r0 8
neg r2 r1
sub r2 r1 r2

r1 = 8

r2 = -8, r1 = 8

r2 = 16

1st R: register where the answer will go
2nd R: register of first operand
3rd S/R: register/value of second operand

sto = save data in register TO memory
loa = put data FROM memory into a register

Accessing memory

sto r1 r2 ; store the contents of r1 to mem[r2]
loa r1 r2 ; get data from mem[r2] and put into r1

sto = save data in register TO memory
loa = put data FROM memory into a register

Special cases:
-  saving TO (sto) address 0 prints
-  reading from (loa) address 0 gets input from user

Accessing memory Basic structure of CS52 program

; great comments at the top!

;

 instruction1 ; comment

 instruction2 ; comment

 ...

 hlt

whitespace before operations/instructions

2/9/17	

10	

Running the CS52 machine

Look at subtract.a52
-  load two numbers from the user
-  subtract
-  print the result

CS52 simulator

Different windows
! Memory (left)
!  Instruction execution (right)
! Registers
!  I/O and running program

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

beq r3 r0 done

What does this do?

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

2/9/17	

11	

beq r3 r0 done

If r3 = 0, branch to the label “done”
if not (else) ic is incremented as normal to
the next instruction

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

ble r2 r3 done

What does this do?

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

ble r2 r3 done

If r2 <= r3, branch to the label done

1st R: first register for comparison
2nd R: second register in comparison
3rd B: label

-  Conditionals
-  Loops
-  Change the order that instructions are

executed

2/9/17	

12	

CS52 machine execution Basic structure of CS52 program

; great comments at the top!

;

 instruction1 ; comment

 instruction2 ; comment

 ...

label1

 instruction ; comment

 instruction ; comment

label2

 ...

 hlt

 end

- whitespace before operations/instructions
- labels go here

More CS52 examples

Look at max_simple.a52
-  Get two values from the user
-  Compare them
-  Use a branch to distinguish between the two cases

-  Goal is to get largest value in r3

-  print largest value

