Survey: respondents

Survey: “How is the class going?”

24 total respondents
Survey: “How is the difficulty of the class?”

Survey: time spent per week

Survey: comments

It’s rewarding to get the right answers after putting in lots of effort

Making my code work after hours of coding!!

The feeling of relief/success of turning in assignments

Survey: comments

More opportunities for collaboration or at least a less pessimistic attitude towards discussing assignments with classmates.
Practice questions for every test so we can have a good idea of what to expect on the tests.

Having a CS 52 mixer would allow students and mentors to interact in a more social environment creating a stronger Pomona CS community. Although CS snack and the weekly lunch with Prof. Kauchak are good events, those are very defined and formal events to perform informal actions like getting to know someone else better. A mixer with all the sections would also allow non-Pomona students to meet new students. Libations optional.

Haskell>SML and what I mean by it's just going ok is that I think we could learn more

Releasing homework solutions after we complete them.
Survey: comments

I have honestly enjoyed the midterms

Encryption

What is it and why do we need it?
Encryption: a bad attempt

Encryption: the basic idea

Encryption: a better approach

Encryption uses

Where have you seen encryption used?
Encryption uses

Private key encryption

Any problems with this?
Private key encryption

Public key encryption

Two keys, one you make publicly available and one you keep to yourself

Public key encryption

Share your public key with everyone

Public key encryption
Public key encryption

Only the person with the private key can decrypt!

Modular arithmetic

Normal arithmetic:
\[a = b \]
a is equal to b or \[a - b = 0 \]

Modular arithmetic:
\[a \equiv b \pmod{n} \]
a - b = n*k for some integer k or
a = b + n*k for some integer k or
a \% n = b \% n (where \% is the mod operator)

Which of these statements are true?

12 \equiv 5 \pmod{7}
52 \equiv 92 \pmod{10}
17 \equiv 12 \pmod{6} \quad a - b = n*k for some integer k or
a = b + n*k for some integer k or
a \% n = b \% n (where \% is the mod operator)
65 \equiv 33 \pmod{32}

Modular arithmetic

Which of these statements are true?

12 \equiv 5 \pmod{7} \quad 12 - 5 = 7 = 1*7
12 \% 7 = 5 = 5 \% 7
52 \equiv 92 \pmod{10} \quad 92 - 52 = 40 = 4*10
92 \% 10 = 2 = 52 \% 10
17 \equiv 12 \pmod{6} \quad 17 - 12 = 5
17 \% 6 = 5
12 \% 6 = 0
65 \equiv 33 \pmod{32} \quad 65 - 33 = 32 = 1*32
65 \% 32 = 1 = 33 \% 32
Modular arithmetic properties

If:
\[a \equiv b \pmod{n} \]
then:
\[a \mod n = b \mod n \]

"mod"/remainder operator
congruence (mod n)

More importantly:
\[(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n \]
and
\[(a*b) \mod n = ((a \mod n) \times (b \mod n)) \mod n \]

What do these say?

Modular arithmetic

Why talk about modular arithmetic and congruence? How is it useful? Why might it be better than normal arithmetic?

We can limit the size of the numbers we're dealing with to be at most n (if it gets larger than n at any point, we can always just take the result mod n)

The mod operator can be thought of as mapping a number in the range 0 ... n-1

GCD

What does GCD stand for?
Greatest Common Divisor

$\text{gcd}(a, b)$ is the largest positive integer that divides both numbers without a remainder.

$\text{gcd}(25, 15) = ?$

$\text{gcd}(100, 52) = ?$

$\text{gcd}(25, 15) = 5$

\[
\begin{array}{c|c|c}
 & 25 & 15 \\
\hline
25 & 5 & 5 \\
\hline
1 & 3 & 1 \\
\end{array}
\]

$\text{gcd}(100, 52) = 4$

\[
\begin{array}{c|c|c}
 & 100 & 52 \\
\hline
100 & 52 & 13 \\
50 & 20 & 4 \\
10 & 5 & 2 \\
2 & 1 & 1 \\
\end{array}
\]
Greatest Common Divisor

\[\text{gcd}(a, b) \] is the largest positive integer that divides both numbers without a remainder

\[\text{gcd}(100, 9) = ? \]
\[\text{gcd}(23, 5) = ? \]
\[\text{gcd}(7, 56) = ? \]
\[\text{gcd}(14, 63) = ? \]
\[\text{gcd}(111, 17) = ? \]

Any observations?

Greatest Common Divisor

A useful property:

If two numbers, \(a \) and \(b \), are relatively prime (i.e. \(\text{gcd}(a, b) = 1 \)), then there exists a \(c \) such that

\[a^c \mod b = 1 \]
RSA public key encryption

Have you heard of it?

What does it stand for?

RSA is one of the most popular public key encryption algorithms in use

RSA = Ron Rivest, Adi Shamir and Leonard Adleman

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. | Choose a bit-length k
 | Security increases with the value of k, though so does computation |
| 2. | Choose two primes p and q which can be represented with at most k bits |
| 3. | Let $n = pq$ and $q(n) = (p-1)(q-1)$
 | $q(n)$ is called Euler’s totient function |
| 4. | Find d such that $0 < d < n$ and $gcd(d,q(n)) = 1$ |
| 5. | Find e such that $de \mod q(n) = 1$
 | Remember, we know one exists! |

Given this setup, you can prove that given a number m:

$$(m^e)^d = m^{de} = m \pmod{n}$$

What does this do for us, though?
RSA public key encryption

\[p: \text{prime number} \quad q: \text{prime number} \quad n = pq \]

\[\phi(n) = (p-1)(q-1) \]

\[d \quad 0 < d < n \text{ and } \gcd(d, \phi(n)) = 1 \]

\[e \quad de \mod \phi(n) = 1 \]

Given this setup, you can prove that given a number \(m \):

\[m^{ed} \equiv m \pmod{n} \]

What does this do for us, though?
RSA encryption/decryption

<table>
<thead>
<tr>
<th>Private Key</th>
<th>Public Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d, n)</td>
<td>(e, n)</td>
</tr>
</tbody>
</table>

You have a number m that you want to send encrypted

$\text{encrypt}(m) = m^e \mod n$ \hspace{1cm} (uses the public key)

How does this encrypt the message?

- Maps m onto some number in the range 0 to $n-1$
- If you vary e, it will map to a different number
- Therefore, unless you know d, it’s hard to know what the original m was after the transformation

RSA encryption/decryption

<table>
<thead>
<tr>
<th>Private Key</th>
<th>Public Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d, n)</td>
<td>(e, n)</td>
</tr>
</tbody>
</table>

You have a number m that you want to send encrypted

$\text{encrypt}(m) = m^e \mod n$ \hspace{1cm} (uses the public key)

$\text{decrypt}(z) = z^d \mod n$

$\text{decrypt}(z) = \text{decrypt}(m^e \mod n)$

$= (m^e \mod n)^d \mod n$ \hspace{1cm} \text{definition of decrypt}

$= (m^e)^d \mod n$ \hspace{1cm} \text{modular arithmetic}

$= m \mod n$ \hspace{1cm} \text{mod} \hspace{1cm} (\text{mod} \hspace{1cm} n)$

Did we get the original message?
RSA encryption/decryption

Encrypt(m) = m^e \mod n

Decrypt(z) = z^d \mod n

\begin{align*}
\text{Decrypt}(z) &= \text{Decrypt}(m^e \mod n) \\
&= (m^e \mod n)^d \mod n \\
&= (m^e)^d \mod n \\
&= m \mod n \\
\text{if } 0 \leq m < n, \text{ yes!}
\end{align*}

RSA encryption: an example

\begin{align*}
p &: \text{ prime number} \\
q &: \text{ prime number} \\
n &= pq \\
\phi(n) &= (p-1)(q-1) \\
d &\mid 0 < d < n \text{ and } \gcd(d,\phi(n)) = 1 \\
e &= d \mod \phi(n) = 1
\end{align*}

\begin{align*}
p &= 3 \\
q &= 13 \\
n &= p \times q \\
\phi(n) &= (p-1)(q-1) \\
d &= ? \\
e &= ?
\end{align*}

\begin{align*}
p &= 3 \\
q &= 13 \\
n &= p \times q \\
\phi(n) &= (p-1)(q-1) \\
d &= ? \\
e &= ?
\end{align*}
RSA encryption: an example

<table>
<thead>
<tr>
<th>p: prime number</th>
<th>q(n) = (p-1)(q-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q: prime number</td>
<td>d: 0 < d < n and gcd(d, q(n)) = 1</td>
</tr>
<tr>
<td>n = pq</td>
<td>e: de mod q(n) = 1</td>
</tr>
</tbody>
</table>

p = 3
q = 13
n = 39
q(n) = 24

d = ?
e = ?
RSA encryption: an example

<table>
<thead>
<tr>
<th>p: prime number</th>
<th>q: prime number</th>
<th>n = pq</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 3</td>
<td>q = 13</td>
<td>n = 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ϕ(n) = 24</td>
</tr>
<tr>
<td></td>
<td>d: 0 < d < n and gcd(d, ϕ(n)) = 1</td>
<td>d = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e = 29</td>
</tr>
</tbody>
</table>

encrypt(10) = 4

decrypt(4) = ?
RSA encryption: an example

- **n = 39**
- **d = 5**
- **e = 29**

encrypt(m) = m^e \mod n

| encrypt(10) = 10^{29} \mod 39 = 4 |
| encrypt(4) = 4^5 \mod 39 = 10 |

decrypt(z) = z^d \mod n

| decrypt(4) = 4^5 \mod 39 = 10 |

RSA encryption: an example

- **n = 39**
- **d = 5**
- **e = 5**

encrypt(m) = m^e \mod n

| encrypt(2) = 2^5 \mod 39 = 32 | encrypt(2) = 2^5 \mod 39 = 32 |
| encrypt(32) = 32^5 \mod 39 = 32 | encrypt(32) = 32^5 \mod 39 = 2 |

decrypt(z) = z^d \mod n

| decrypt(2) = 2^5 \mod 39 = 32 | decrypt(32) = 32^5 \mod 39 = 2 |
RSA encryption in practice

For RSA to work: $0 \leq m < n$

What if our message isn't a number?
We can always convert the message into a number (remember everything is stored in binary already somewhere!)

What if our message is a number that's larger than n?
Break it into n sized chunks and encrypt/decrypt those chunks

encrypt("I like bananas") =

0101100101011100 ...

encode as a binary string (i.e. number)

4, 15, 6, 2, 22, ...

break into multiple < n size numbers

17, 1, 43, 15, 12, ...

encrypt each number

decrypt((17, 1, 43, 15, 12, ...)) =

4, 15, 6, 2, 22, ...

decrypt each number

0101100101011100 ...

put back together

"I like bananas"

turn back into a string (or whatever the original message was)

Often encrypt and decrypt just assume sequences of bits and the interpretation is done outside