
Computer Science 52

Models of Computation

Spring Semester, 2017

Computer scientists use mathematical models to study the nature of

computation. In these notes, we look at two sorts of models, finite

automata and Turing machines.

I Deterministic finite automata

Start with a finite alphabet,A. In examples, we often use an alpha-

bet with only two symbols, like a and b or 0 and 1. In “real life,” the

alphabet is the full alphabet or a computer system’s character set. A

deterministic finite automaton, abbreviated DFA, consists of

� a finite set Q of states, one of which is designated as the start

state q0;

� a subset F of Q of final states; and

� a transition function � : Q�A! Q.

The idea is that our automaton processes a string of alphabet symbols,

one at a time. It begins in the start state, and each time it processes a

character, it moves to a (possibly different) state as determined by the

transition function. The “deterministic” part is that the new state is

determined solely by the current state and the symbol.

A string is accepted if, after processing the string, the machine is in a

state in F . Otherwise, the string is rejected. The language accepted by

the DFA is the set of all accepted strings.

We can represent a DFA by a diagram with arrows labeled by alphabet

letters, like the one in Figure 1. Starting in the start state, the one

with a triangle, we process a string of characters from left to right.

At each step, we follow the arrow labeled by the current character. If,

after following an arrow for each character, we end up in a final state,

we accept the string. The diagram shows a DFA which accepts the

language of strings that start and end with a.

More formally, letA� be the set of all strings composed of letters

from the alphabetA. It includes the empty string, denoted �. The

transition function � takes states and characters into states. We can

define a new function �� from states and strings into states using

recursion; it is easy to imagine transforming this definition into an



computer science 52, models of computation 2

b

a

aa

b

b

b

a

q0

q1

q3

q2

Figure 1: A DFA over the two-letter
alphabet accepting strings that begin
and end with a. The start state is q0;
the only final state is q1.

SML function. Consider a string to be empty or to consist of a first

character c and a “rest of string” s.

���q; �� � q
���q; c s� � �����q; c�; s�

Then the language accepted by the DFA with transition function � is�
t 2A� j ���q0; t� 2 F

	
:

II Nondeterministic automata

A nondeterministic finite automaton, abbreviated NFA, is one that

may make “guesses” as it processes characters. More precisely, its

transition function gives not a single new state but a set of possibili-

ties. There may be several arrows out of a state, all labeled with the

same character. Or there may be a state with no arrow labeled with a

particular character. Let P�Q� be the set of subsets of Q, and consider

a transition function of the form

� : Q�A! P�Q�.

If the automaton is in state q and encounters a symbol c, then ��q; c�
is the set of possible next states. One can think of the new state

as being chosen randomly from the set. The set may have just one

element, in which case there is no choice; or the set may even be

empty, in which case there is no new state and the automaton freezes

up. We can define a function that gives us the set of possible states of

the automaton after processing a string. It is a function that takes a

set of states and a string and produces a set of states.

���R; �� � R
���R; c s� �

S
q2R �����q; c�; s�

An NFA accepts the string t if ���fq0g; t� contains an element of F . A

string is accepted if there is one sequence of guesses that results in a



computer science 52, models of computation 3

final state. It is rejected if there is no way to get into a final state after

processing the string.

Nondeterministic automata are useful because they are often simpler

and more compact. The NFA in Figure 2 accepts the language of all

strings that end with bbb.

a

b bb

b

q1 q2 q3q0

Figure 2: An NFA over the two-letter
alphabet accepting strings that end
with bbb. A DFA accepting the same
language would have more states or
more transitions.

A DFA is a special kind of NFA, so a language that can be accepted by

a DFA is also accepted by a DFA. It is also true that a language that

is accepted by a NFA is accepted by a DFA. To see that, transform

transform a nondeterministic automaton into a deterministic one that

accepts the same states. Given an NFA, construct a DFA whose states

are sets of the NFA’s states, and define a transition function similar to

the one above.

III Regular and non-regular languages

A language (that is, a set of strings over some alphabet) is regular if it

is accepted by some finite automaton. We have seen that a language

accepted by an NFA is also accepted by a DFA, so we can say that a

language is regular if it is accepted by a DFA.

Are there languages that are not regular? Yes. A common example is

the language of balanced parentheses. The string ()((())()) is in

that language, while )() is not. Most programming languages are not

regular because they insist, among other things, that parentheses be

balanced. Another example of a non-regular language is given in one

of the assignments.

To see how one might determine that a language is not regular, sup-

pose that we have a language and a DFA that accepts it. Consider how

the DFA processes strings. If two strings, t and u, end up in the same

state and we append the same suffix x to each of them, then the new

strings tx and ux are also in the same state. We know that the two

strings t and u are in different states if we can find a suffix x such

that one of tx and ux is accepted and the other is rejected. When this

occurs, we say that we can “distinguish” between t and u.

Notice that “distinguishing” depends only on the language being

accepted and is independent of the particular DFA. Given a language



computer science 52, models of computation 4

L, we say that a pair of strings t and u is distinguishable if there is

another string x such that tx is in L and ux is not, or vice versa. We

have the following theorem.

Regular Language Theorem. A language L is regular if and only if

there is no infinite set of pairwise distinguishable strings.

Here is a sketch of one direction of the proof: If a language is regular,

it is accepted by some DFA with n states. Suppose that we have a set

of strings with more than n elements. Each string is processed by the

DFA into some state, and since there are more strings than states, two

strings must end up in the same state. (This is an application of the

famous Pigeon Hole Principle.) Those two strings are indistinguishable.

Therefore, any pairwise indistinguishable set can have at most n
elements and must be finite.

The proof of the converse requires equivalence relations, which are

covered in another class.

We can now see why the language of balanced parentheses is not

regular. Let pj be the string consisting of exactly j left parentheses. If

j 6� k, then pj and pk are distinguishable because, when r is the string

of j right parentheses, pjr is in the language and pkr is not. The set

of all pj ’s is an infinite pairwise distinguishable set.

IV Context-free Grammars

Earlier in the course, we saw the EBNF formalism for defining lan-

guages. It is equivalent to context-free grammars, a topic that some

of you may have encountered in a linguistics course. The language of

balanced parentheses is described by a context-free grammar, as are

most programming languages.

In a later course, you will study context-free grammars and discover

that they can be recognized by a more powerful machine model called

a push down automaton.

V Turing Machines

Turing machines are the “ultimate” computing machines. Anything

that can be computed can be computed on a Turing machine. The

machines were invented by Alan Turing in the 1930’s to study the

nature of computation.

A Turing machine is like a DFA, except that it has a “memory” in the

form of a paper tape. Here is a quick summary of the structure of the

machine. A Turing machine consists of the following components:



computer science 52, models of computation 5

� a finite input alphabetA;

� a finite tape alphabet T which contains all the symbols inA plus

(at least) a blank symbol ;

� a finite set of states Q with three especially-designated states—a

start state q0, an accepting state qA, and a rejecting state qR ;

� a tape, divided into cells, each holding exactly one character;

� a head that scans one cell of the tape; and

� a finite set of possible transitions of the form �a; q ; b;D; r�.

The tape is potentially infinite in both directions. By “potentially” we

mean that we only use finitely much of it at any given time, but we can

always extend the tape in either direction when we need to. All tape

cells, except the ones that have been explicitly changed, contain the

blank symbol . When the machine begins, it is in the start state, there

is a string of symbols from the input alphabet on the tape, and the

tape head is scanning the leftmost symbol of the input string.

A transition specifies one step in the computation. It is determined

by the current state of the machine and the contents of the cell under

the head. The transition �a; q ; b;D; r� applies when the tape head is

scanning a character a and the machine is in state q. The action of

the transition is to replace the character by b (which may be the same

as a), to move the head as specified by D, and to enter state r . The

machine is then ready for the next step in the computation. The head

movement D is either L, R, or S, standing for move left one square,

move right one square, or stay put.

A string is accepted if the Turing machine enters its accepting state Unlike a DFA or NFA, a Turing machine
need not examine its entire input string.
It may also go backwards over its input,
or replace part of the input with other
characters.

at some point along the computation. A string is rejected if it is not

accepted. For simplicity, it is best to design the machine so that it

enters the explicit rejecting state whenever possible, but this require-

ment cannot always be enforced. There may be situations in which no

transition is applicable; the machine freezes and implicitly rejects its

input in those cases.

□ ; 1 , S

0 ; 1
 , L

1 ; 1 , R
1 ; 0 , L

□ ; □ , R

□ ; □ , L

1 ; 1 , L

0 ; 0 , R

0 ; 0 , L

q0 q1

q2

q3

Figure 3: A Turing machine that adds
one in binary.

Turing machines are not limited to accepting and rejecting strings.



computer science 52, models of computation 6

They can also carry out computations to produce results. The Turing

machine in Figure 3 adds one to a binary number. The labels on the

arrows are

old-character ; new-character, direction

The idea is that the machine (in its start state q0) moves to the right

of its input. It then enters its “carry state” q1 and moves to the left,

changing 1’s to 0’s. When it encounters a 0, it exits the “carry state”

and preserves the input until it halts on the left bit of the result.

Turing machines can be non-deterministic. That is, there may be

situations in which two or more transitions are applicable. You can

think of the Turing machine as making a random choice of which

transition to apply in those cases. A string is accepted if some legal

sequence of steps leads to an accepting state. Perhaps surprisingly,

the class of languages accepted by non-deterministic Turing machines

is the same as the class of languages accepted by deterministic ones.

As already mentioned, Turing machines are thought to be “univer-

sal” in the sense that any computable process can be carried out on

a Turing machine. It would not be difficult to write in your favorite

programming language a program that simulates a Turing machine. It

is equally possible, but tedious, to design a Turing machine that sim-

ulates an ordinary computer program. Turing machines are valuable

because they capture the nature of computation in a simple model and

can therefore be used to study the limits of computation.

VI The Church-Turing Thesis

The value of a Turing machine is not that we actually carry out com-

putations on them, but that we use them to study computation. In

this course you will design a few Turing machines to do simple com-

putational tasks. If you had more time (as perhaps you will in a later

course), you will create Turing machines with more complicated behav-

ior. You might, for example, build a Turing machine that executed SML

programs.

After some experience with Turing machines, people often come to a

conclusion:

Any computable process can be carried out on a Turing machine.

This assertion is known as the Church-Turing Thesis, or more simply,

Church’s Thesis. It is named for the mathematicians Alonzo Church

and Alan Turing, both pioneers in the theory of computation.



computer science 52, models of computation 7

The Church-Turing Thesis is a statement of confidence. It cannot

ever be proved, because we do not have a clear definition of “com-

putable process.” One might, in principle at least, discover a process

that everyone agrees is computable but cannot be carried out on a

Turing machine. It is highly unlikely that anyone will do that, and

the Church-Turing Thesis is usually taken as the definition of a com-

putable process.

VII Self-reproducing Programs

To see an unusual example of a computable process, we take a short

digression into self-reproducing programs. We seek a program that

takes no input and produces its own code as its output. Here is an

example in SML.

val q="\"";

val s=";";

(fn x => x^q^x^q^s)"(fn x => x^q^x^q^s)";

This program is unsatisfying because the declarations of the values q

and s are “outside” the program. We can put it inside by complicating

the function a bit. The code below generates a self-reproducing expres-

sion in SML. We use ASCII values for the characters to avoid having to

quote the quotation mark.

val q=str(chr 34);

val s=str(chr 59);

(fn x => x^q^x^q^s)

"val q=str(chr 34);val s=str(chr 59);(fn x => x^q^x^q^s)";

This program is still not quite self-reproducing, because the code

above contains line breaks and spaces that do not appear in the out-

put. But the output itself is exactly a self-reproducing program!

The Java program below is another example of a self-reproduction.

It comes from www.nyx.net/~gthompso/self_java.txt where A computer virus is a slightly more
sophisticated version of a self-
reproducing program. Instead of
merely writing its own source code, the
virus makes a copy of itself and sends
it on to another computer.

it is attributed to Bertram Felgenhauer. A cursory web search will

uncover literally hundreds of self-reproducing programs in all possible

programming languages.

class S {

public static void main(String[]a){

String s="class S{public static void main(String[]a){

String s=;char c=34;

System.out.println(s.substring(0,52)+

c+s+c+s.substring(52));}}";

char c=34;

www.nyx.net/~gthompso/self_java.txt


computer science 52, models of computation 8

System.out.println(s.substring(0,52)+c+s+c+s.substring(52));

}

}

Running these programs is a computational process. Therefore, if we

accept the Church-Turing Thesis, there must be a Turing machine that

does the same thing. By “the same thing,” we might mean the trivial

act of printing the above SML code or Java code, but in fact one can

design a Turing machine that will print its own description. Try it

before reading further!

If we accept the Church-Turing Thesis, then we have an appealing

shortcut to designing Turing machines. We can informally describe

a computational process and then use the Church-Turing Thesis to

assert that a corresponding Turing machine must exist. It is only a

shortcut, however. If we were pressed, we would have to verify an

instance of the thesis by specifying the Turing machine down to the

last transition. It is usually not a difficult task, but it is tedious and

distracting. For our purposes now, we will rely on the Church-Turing

Thesis and be satisfied with the higher-level descriptions.

VIII Universal Turing Machines

If someone gives you a description of a Turing machine and an input

string appropriate for that machine, you can step through the compu-

tation. With pencil and paper, you can keep track of the contents of

the tape, the position of the head, and the state of the machine. It is

a simple mechanical—or computational—process to move from one

configuration to the next.

It follows that simulating the behavior of a Turing machine is itself a

computational process. By the Church-Turing thesis, therefore, there

must be a Turing machine that simulates other Turing machines.

More precisely, there is a Turing machine U , called a universal Turing

machine. Suppose that hMi is the description of a Turing machine M
(suitably translated into the input alphabet of U ) and w is an input

string for M . When presented with ta tape containing hMi and w, U

does the same thing (accepts, rejects explicitly, or runs forever) as M
does on input w. We have a programmable computer!

The idea that a program, hMi in this case, is just another form of

data was a crucial observation in the development of computers.

The mathematician John von Neumann is usually credited with that

insight.



computer science 52, models of computation 9

The indistinguishability of program and data leads to interesting cases

of self-refeence. One such example is the self-reproducing computer.

Let Cw be the Turing machine that erases its input, prints w on the

tape, and then halts. Creating Cw from w is a computational process,

so there is a Turing machine D that on input w prints a description of

Cw . Now let E be the Turing machine that behaves as follows.

On input w, E begins by making a second copy of w. It simulates
D on one copy to obtain Cw . It then treats the second copy of w
as a Turing machine description and “composes” it with Cw : first
Cw , then w. The Turing machine E prints a description of the
composite machine and then halts.

Notice that E halts on all inputs, because it is only manipulating the

descriptions of Turing machines.

Let e be a description of E, and let s be the Turing machine description

produced by running E with input e. Let S be the Turing machine

described by s. What does S do? It runs Ce and writes e on the tape. It

passes that input to E, which in turn produces s. Therefore, S writes

its own description.

IX The Halting Problem

Here is a problem that programmers confront frequently: Given a

program and an input, does the program with the given input halt?

It is a question that can be asked in our ordinary language about

computation. And it can often have an easy answer. All of us have

found, and corrected, infinite loops in our code. But is there a general

algorithm that will always answer the question?

Simulating the program on the input will give us only one possible

answer. If the simulation halts, then we can say “Yes, the program

halts.” But if the simulation does not halt, we will never get to the

poitn where we can say “No, the program runs for ever.”

It turns out that there is no algorithm to decide whether a program

halts on a given input value. In our language of Turing machines, there

is no Turing machine H with the following properties.

� An input for H is a pair �hMi;w� consisting of a Turing machine

description and an input.

� If M with input w halts, then H with input �hMi;w� halts in an

accepting state.

� If M with input w fails to halt, then H with input �hMi;w� halts

in an rejecting state.



computer science 52, models of computation 10

The result is troubling. We have a simple question about computation

that has no computable answer.

The proof that there is no Turing machine H is similar to the construc-

tion of a self-reproducing program. Suppose that we have a Turing

machine H that halts on all inputs. We will find a Turing machine M
and an input w for which H gives the “wrong answer” for �hMi;w�.
Let D be a Turing machine that, on input x, does the following.

i. creates the pair �x;x�,
ii. simulates H on �x;x�, and

iii. accepts x if H rejects and loops forever if H accepts.

This is a symbolic activity that follows explicit rules and uses a

bounded amount of resource. Therefore, by the Church-Turing Thesis,

it can be carried out on a Turing machine. Let hDi be a description of

this machine. What does D do on input hDi?

� If H accepts �hDi; hDi�, then D loops forever on hDi.
� If H rejects �hDi; hDi�, then D accepts hDi—and halts.

Either way, H gives the “wrong answer” for �hDi; hDi�, and H is not

the “halting checker” that we were seeking.

The problem of finding an algorithm that will tell us whether M halts

on input w is called the Halting Problem. The proof just sketched

shows that there is no computable solution to the Halting problem. It

is an example of a problem that has no computable solution. There

is, of course, a non-computable solution to the Halting Problem. The

definition

H
�
hMi;w

�
�

8<:0 if M halts on w, and

1 otherwise

is a perfectly well-defined mathematical function. It is just not a

computable function.

Thnegative solution to the Halting Problem has important conse-

quences. For example, we cannot decide in a computational manner

if a Turing-machine-and-input pair enters a specific state, because if

we could, we could apply that ability to the halting state and deter-

mine whether another computation halts. Translated to programs,

we cannot decide—in an algorithmic manner—whether a program en-

ters a particular block of code. This limits the ability of a compiler to

eliminate “dead code.” There are many similar “impossibility” results.


	Deterministic finite automata
	Nondeterministic automata
	Regular and non-regular languages
	Context-free Grammars
	Turing Machines
	The Church-Turing Thesis
	Self-reproducing Programs
	Universal Turing Machines
	The Halting Problem

