
Computer Science 52

RSA Encryption

Spring Semester, 2017

This document presents the technique of RSA encryption and its

mathematical foundation. The implementation details can be found

in Sections II, IV, and V. The number theory underlying the technique

is in Section III. A broader discussion of the use of RSA encryption

appears in Sections VI and VII.

I Encryption: A Quick Overview

Private communication has been a concern throughout history. People

have developed many clever ways to send secret messages to their

partners in business, politics, war, and adultery. In the age of com-

puter communication, we assume that anyone may examine the bits

flying around the internet, and we use mathematical techniques to

scramble the bits in our message so that it is intelligible only at the

endpoints of the transmission.

Most often, the technique of encryption is widely known. The security

of the communication lies in a key, some binary data that can be used

to scramble, or unscramble, the bits in a message. An encryption

system must have three properties:

1. It must be “easy” to encrypt a message if you know the

(encryption) key.

2. It must be “easy” to decrypt a message if you know the

(decryption) key.

3. It must be “hard” to decrypt a message without the decryp-

tion key.

By “easy” we mean “polynomial time.” By “hard” we mean “not in

polynomial time, for any polynomial.” Another way to think of “hard”

is that it is not worth the time or effort required to decrypt a message

without a key. For many modern schemes, decryption without a key

would take many centuries—even using the fastest computers of the

day.

A human-readable message is called a plaintext. An encrypted version

of the message is called a ciphertext. There is an encryption function

E that takes a plaintext P and an encryption key KE , and produces the

ciphertext C .

E�P; KE� � C



computer science 52, rsa encryption 2

There is also a decryption function D that takes a ciphertext and a

decryption key KD , and reproduces the plaintext message.

D�C; KD� � P

In a symmetric or private key system, the encryption and decryption

keys are the same. A private key system has the disadvantage that

the parties must get together and agree upon a shared key. It has the

advantage in that the computational overhead is smaller. Once the key

is in place, communication can happen much faster.

In an asymmetric or public key system, the two keys are different. Each

participant has her or his own pair of keys. The encryption keys are

known to everyone, but the decryption keys are kept secret. Person
The names of the participants A and B
are Alice and Bob. The eavesdropper
E is Eve. The three of them appear
in most of the encryption papers
and books written in the last several
decades. One wonders why, after all
those years, Eve is still interested in
Alice and Bob.

A can look up person B’s encryption key, encrypt a message with it,

and send the result to person B. Only someone with B’s decryption

key, namely only B, can read the message. An eavesdropper E might

intercept the encrypted message but would not be able to decipher it.

Our study will focus on the RSA system, named for the initials of its

three inventors. It is a public key system that was invented in 1978
The original paper, linked from the
course web page, is interesting and
accessible. R. L. Rivest, A. Shamir, and L.
Adleman. 1978. A method for obtaining
digital signatures and public-key
cryptosystems. Commun. ACM 21, 2
(February 1978), 120-126. DOI=http://
dx.doi.org/10.1145/359340.359342

and is widely used.

II RSA Encryption: The Recipe

Here, briefly, are the steps to carry out an RSA encryption scheme.

1. Find two large prime numbers, p and q.

2. Compute n � pq and ’�n� � �p � 1��q � 1�.

3. Find an integer d which is relatively prime to ’�n�.

4. Use an extension of Euclid’s algorithm to obtain its modulo-

’�n� inverse e.

5. Declare the pair �e; n� to be your public encryption key and

publish it.

6. Keep your decryption key �d; n� secret.

A message m is a string of bits. We can think of it as the binary repre-

sentation of a large integer. When someone wants to send a confiden-

tial message to you, they look up your public key �e; n�, compute

c �me mod n;

and send c to you. Upon receiving c, you can recover the original

message using your private key �d; n�:

m � cd mod n:

This works because of some number theoretic facts that we will dis-

cuss in Section III. The scheme is believed to be secure because there is A few values like m � 0 and m � 1 are
not changed by RSA encryption, but
they probably do not correspond to
very interesting messages.

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342


computer science 52, rsa encryption 3

no known way to find the private key �d; n� from the public key �e; n�
except by discovering the factors p and q of n. If p and q are large

enough, finding them would probably take centuries.

If the message m is a number larger than n, then it is necessary to

break m into several smaller blocks of bits and encrypt each block

separately. We discuss this, and some other implementation details, in

Section V.

III Mathematical Foundations

Quotients and Remainders

If m and n are integers, and n 6� 0, then there is a unique pair of

integers q and r satisfying

m � qn� r and 0 � r < jnj:

Not surprisingly, q is the quotient and r is the remainder when m is

divided by n. We say that n divides m, or n is a divisor of m, when the Be aware that different processors
compute remainders differently. The
remainder operator % in C or Java may
yield a result r which does not satisfy
the stated inequality, but this will
happen only when one or both of the
arguments is negative.

remainder is zero. The notation n jm is used to signify that n divides

m.

Theorem 1 Suppose that a, b, and c are integers, and n j a and n j b.

Then the following equations hold:

1. n j �a� b�,

2. n j ��a�, and

3. n j �ac�.

The proof is straightforward and omitted. Notice that it follows from

the theorem that n j �a� bc�.

An integer p is a prime number if 1 < jpj and the only divisors of

p are �1 and �p. A number that is not prime is composite and can

be decomposed into two factors. Those factors are either prime or

can themselves be decomposed further. A fundamental fact about

the integers is that the process will eventually halt with the original

number represented as a product of prime factors.

For example, 47 is itself a prime number and is the product of a single

prime, while 4914 is the product of six primes (not all of them are

different): 4914 � 2 � 33 � 7 � 13.

Theorem 2 (Fundamental Theorem of Arithmetic) Any positive inte-

ger can be written as the product of positive primes. The representation

is unique up to the order of the factors.



computer science 52, rsa encryption 4

Exercise 3.1. Suppose that p and q are different prime numbers ant

that p j n and q j n. Use the Fundamental Theorem of Arithmetic to

prove that pq j n.

Modular Arithmetic

We write a � b �mod n� if b � a is divisible by n. This notion, called The notation is potentially confusing.
Here, “mod” is not used as an operator;
we are not saying that a is equivalent
to �b mod n�. Rather, the equivalence
between a and b depends on n. A
better notation might be a�n b.

congruence, is an equivalence relation. All the usual laws of arith-

metic hold for congruence; for example, we have the distributivity of

multiplication over addition and the associativity of multiplication.

a�b � c� � ab � ac �mod n�
a�bc� � �ab�c �mod n�

When computing arithmetic results for a congruence, it does not

hurt replace a value by its remainder on division by n. This keeps the

results in the range between 0 and jn� 1j.

For encryption, n is most likely much
larger than the largest possible integer.
For this, we need multi-word data
structures and special library routines
for the arithmetic operations.

Exercise 3.2. Suppose that p and q are different prime numbers and

that that a � b �mod m� and a � b �mod q�. Prove a � b �mod pq�.

(Hint, use Exercise 3.1.

Greatest Common Divisors

Suppose that a and b are integers, with one or both being non-zero.

An integer d is a greatest common divisor of a and b if

1. d j a,

2. d j b, and

3. if e j a and e j b, then e j d.

According to this definition, if d is a greatest common divisor of a and

b, then so is �d. We use the notation gcd�a; b� to denote the unique

positive greatest common divisor. The integers a and b are relatively

prime if gcd�a; b� � 1.

The following theorem characterizes the greatest common divisor. As

we shall see, it provides an extremely useful tool.

Theorem 3 Suppose a and b are integers, at least one of which is non-

zero, and let d be the least positive integer of the form ua � vb. Then

d � gcd�a; b�.



computer science 52, rsa encryption 5

Proof: First observe that there are positive integers of the form ua�
vb. (If a is positive, just take u to be 1 and v to be 0. If a is negative,

take u to be �1 and v to be 0. If a is zero, then b is non-zero—take u
to be 0 and v to be �1.) Therefore, there is a least positive integer d of

the appropriate form.

Suppose that d � u0a � v0b. Divide a by d to obtain a quotient q
and remainder r : a � qd � r and 0 � r < d. Then r � a � qd �
�1� qu0�a� ��qv0�b, so r is of the form ua� vb. But d was the least

positive value of that form, and r is less than d. Therefore r cannot

be positive. The only possibility is for r to be zero, and in that case, d
divides a. In the same way, we conclude that d divides b.

If e divides both a and b, then e divides the combination u0a � v0b.

Hence e divides d. This completes the proof that d � gcd�a; b�.

We can add, subtract, and multiply in modulo-n arithmetic. We can

sometimes divide. The next corollary tells us when.

Corollary 4 If gcd�a; n� � 1, then there is an integer u such that

ua � 1 �mod n�.

Proof: There are integers u and v such that ua� vn � 1. We see that

ua� 1 � ��v�n, so n divides ua� 1 and ua � 1 �mod n�.

Corollary 5 If gcd�a; n� � gcd�b; n� � 1, then gcd�ab; n� � 1.

Proof: Again, there are integers u and v such that ua � vn � 1.

Similarly, there are u0 and v0 such that u0b � v0n � 1. Multiply the

left hand sides of the two equations to get another expression that

equals 1:

�uu0�ab � �uav0 �u0bv � vv0�n � 1:

The least positive combination of ab and n is therefore 1, and

gcd�ab; n� � 1.

Exercise 3.3. Show, directly from the definition, that gcd�a; b� is

unique.

Exercise 3.4. Suppose that a and n are relatively prime and n divides

ab. Show that n divides b.

Exercise 3.5. Prove that a is relatively prime to b if and only if there

are integers u and v such that ua� vb � 1.

Exercise 3.6. Suppose that ua � 1 �mod n�. Prove that a is relatively

prime to n.



computer science 52, rsa encryption 6

Euler’s Totient Function

A useful idea is Euler’s totient function, which is defined as follows.

Let n be a non-zero integer. Then ’�n� is the number of integers

between 1 and n� 1 (inclusive) which are relatively prime to n. That is,

’�n� is the cardinality of the set fj j 1 � j < n and gcd�j; n� � 1g.

For example, ’�12� � 4 because 1, 5, 7, and 11 are relatively prime to

12 but the other values in the range from 1 to 11 which are not.

Exercise 3.7. Prove that p is a prime number if and only if ’�p� � p� 1.

Exercise 3.8. If p and q are different primes, show that ’�pq� �
�p � 1��q � 1�.

Exercise 3.9. If p is a prime number and k is positive, what is the value

of ’�pk�?

Euclid’s Algorithm

Theorem 3 is essential for characterizing the greatest common divisor,

but it does not directly give a very efficient algorithm for computing

the gcd. The following properties of the gcd function lead to Euclid’s

algorithm for computing the greatest common divisor.

Theorem 6 For integers a and b, not both zero, we have the following

properties:

1. gcd�a; 0� � jaj.
2. gcd�a; b� � gcd�b; a�.

3. gcd�a; b� � gcd��a; b�.

4. If b � qa� r , then gcd�a; b� � gcd�r ; a�.

Proof: The first three properties can be proved directly from the

definition of the greatest common divisor. For the fourth, let d �
gcd�a; b�. we know that d divides both a and b. A consequence of

Theorem 1 is that d also divides r � b � qa. Similarly, if e divides

both r and a, then e also divides b, and hence e divides d. Therefore,

d � gcd�r ; a�.

Euclid’s algorithm uses the properties of Theorem 6 to preserve loop

invariants. Suppose that the we wish to compute the greatest common

divisor of two integers whose values are stored in the C variables a0

and b0. The pseudo-code below starts by establishing three invariants:

0 � a

0 � b

gcd�a; b� � gcd�a0; b0�:



computer science 52, rsa encryption 7

This is easily done with the two assignments Properties 2 and 3 from

Theorem 6 show that the invariant is established.

a = abs(a0);

b = abs(b0);

while (a != 0)

(a,b) = (b % a, a);

return b;

The invariants are preserved by the loop above: Even though a or b

may be changed by an iteration of the loop, both variables remain

non-negative. Moreover, property 4 from Theorem 6 guarantees that

the gcd does not change.

On each iteration, either a is made smaller. The value of a must even- Picky point: If at the start of the loop
b < a, then the first iteration simply
reverses the values of a and b. After
that, the value of a always decreases.

tually reach zero, and the loop will terminate. When it does, b contains

the greatest common divisor by property 1.

For encryption, we often want to express the greatest common divisor

in terms of the original numbers a0 and b0,

gcd = u*a0 + v*b0.

In fact, the coefficients u and v are often more important than the

value of the gcd itself.

It is easy to modify the Euclid’s algorithm to provide the extra infor-

mation. We simply use four new variables and maintain two additional

invariants.

a � ua� a0� va� b0

b � ub� a0� vb� b0

If we initialize the four variables correctly and preserve the invariants

inside the loop, then the pair ub and vb will be the desired coefficients

when b is returned as the greatest common divisor at the completion

of the loop.

Exercise 3.10. Fill in the details in extending Euclid’s algorithm to find

u and v such that u*a0 + v*b0 is the greatest common divisor of a0

and b0.

Exercise 3.11. Show that Euclid’s algorithm makes at most 2�lg a0 �
lg b0� loop iterations. (In two iterations, either a or b becomes at least

Remember that lg is the base-2 loga-
rithm.

one bit shorter. Can you find a better bound?)

Fermat’s Theorem

The following theorem is the heart of the RSA algorithm.



computer science 52, rsa encryption 8

Theorem 7 (Fermat’s Theorem) If n 6� 0 and gcd�m; n� � 1, then

m’�n� � 1 �mod n�:

Proof: Consider the integers between 1 and jnj�1 which are relatively

prime to n. There are ’�n� of them, and we can list them:

a1; a2; : : : a’�n�:(1)

For each i satisfying 1 � i � ’�n�, let a0i be the remainder upon

division of mai by n. Both m and ai are relatively prime to n, so

by Corollary 5 the product mai is relatively prime to n. Further, by

property 4 of Theorem 6, the remainder a0i is relatively prime to n.

Therefore, a0i occurs among the elements of the list (1).

We next show that the elements in the list

a01; a02; : : : a0’�n�(2)

are all different. If a0j � a0k, then maj � mak �mod n�. We have that

n divides m�aj � ak�, so by the result of Exercise 2, n divides aj � ak.

Because the distance between aj and ak is less than n, this means that

aj � ak � 0, or equivalently, that j � k. Therefore, the lists (1) and

(2) contain exactly the same numbers, although perhaps in different

orders.

Multiplying the numbers in either list gives the same result:

a1a2 : : : a’�n� � a01a02 : : : a0’�n�;

or

a1a2 : : : a’�n� �ma1 ma2 : : : ma’�n� �mod n�
�m’�n� a1a2 : : : a’�n� �mod n�:

(3)

Each term in the product a1a2 : : : a’�n� is relatively prime to n. Us-

ing Corollary 5 inductively, the whole product is relatively prime to

n. By Corollary 4, there is a number u such that ua1a2 : : : a’�n� �
1 �mod n�. Multiplication by u effectively “cancels” a1a2 : : : a’�n�

from the members of Equation (3), leaving the desired result 1 �
m’�n� �mod n�.

Corollary 8 (Fermat’s Little Theorem) If p is a prime number, then

for all integers m, m �mp �mod p�.

Exercise 3.12. Prove Corollary 8, Fermat’s Little Theorem. (Hint: Recall

that ’�p� � p � 1.)

Exercise 3.13. The specific fact upon which the RSA algorithm rests

concerns the product of two primes. If n is the product of two distinct

primes p and q, prove that m �m1�k’�n� �mod n�, for all integers m
and k. (A proof of this fact is sketched in the RSA paper.)



computer science 52, rsa encryption 9

IV Finding Primes and Inverses

Recall from Section II our “recipe” for RSA encryption, repeated at

1. Find two large prime num-
bers, p and q.

2. Compute n � pq and
’�n� � �p � 1��q � 1�.

3. Find an integer d which is
relatively prime to ’�n�.

4. Use an extension of Euclid’s
algorithm to obtain its
modulo-’�n� inverse e.

5. Declare the pair �e; n� to be
your public encryption key
and publish it.

6. Keep your decryption key
�d; n� secret.

the right. Steps 2, 5, and 6 are straightforward, and we have by now

explained the extension to Euclid’s algorithm in step 4. The only gaps

are in steps 1 and 3, both of which begin with the word “find.”

We resort to probabilistic techniques to find large prime numbers and

numbers that are relatively prime to ’�n�. Although we incur the risk

of an error, the probability of the error can be made tiny.

To use the probabilistic techniques, we need a source of random

numbers. For our purposes in the assignment, the random number

generator built into SML is sufficient. For “real” cryptography, we

would need a much better source of random bits. We discuss random

number generators further in Section V.

Industrial Strength Primes

Suppose that we have a number p that we think is prime. If we choose

a random positive number a less than p, we can compute ap mod p.

If the result is different from a, then by Corollary 8, Fermat’s Little

Theorem, we know that p is not prime. If the result is a, then p may,

or may not, be prime.

Now suppose that we repeat the test for many different values of a.

If the two values are ever unequal, then we can declare with certainty

that p is not prime. If, after several tests, we do not discover evidence

that p is non-prime, it is tempting to declare p to be a prime number.

However, there is a chance that we will make a mistake and declare

a number to be prime when it is in fact not. But by making many

such tests, we can make the probability of such an error very low.

A number declared prime on the basis of such a test is called an

industrial strength prime.

Nearly all non-prime numbers will, with high probability, be exposed

by this process, but there are a few exceptions. Non-primes that will

always be declared industrial strength primes by our method are

called Carmichael numbers. Although there is an infinite number of

them, they are rare—meaning that they are distributed sparsely among

the integers. The smallest Carmichael number is 561. Using more

sophisticated number theory, people have devised similar tests that do

not have such a defect. These tests satisfy two properties:

� If p is prime, then every test will report it as prime.



computer science 52, rsa encryption 10

� If p is not prime, then a given test will report it as prime with

probability less than 1=2. Therefore, if we make k tests, the

probability of an error is at most 1=2k, a very small number.

Observe that we are not making a statement about “the probability

that p is prime.” A number is either prime or it is not; there is no

chance involved. We are saying that, if a number is not prime, there is

a small possibility that the test will give wrong information.

To find an industrial strength prime number, we simply generate a

random number and test it, as above, several times. If it survives, we

have our result. If not, we try again with a different random number.

By increasing the number of tests, we decrease the probability of

coming up with a non-prime.

Exercise 4.1. A question for thought: The strategy here is “guess a

number and see if it is prime; if not, guess again.” This seems as bad,

or worse, than a brute-force search for primes. Why do we find primes

after only a “reasonable” number of guesses?

For many years, industrial strength primality testing was the only tech-

nology available. More recently, in 2002, the AKS test for primality was

developed. Refinements of it produce a deterministic test that tells

us whether or not a k-bit integer is prime in O�k6� time. In practice,

the algorithm turns out to be significantly slower than its probabilistic

industrial strength counterpart.

There is, however, still no known way of factoring composite numbers

in deterministic polynomial time. The security of RSA encryption rests

on the difficulty of factoring n.

Inverses

If we have a number d, it is easy to see if gcd�d; ’�n�� � 1. Just

compute the greatest common divisor using Euclid’s algorithm. To

find an integer relatively prime to ’�n�, simply generate a random

value between 3 and ’�n� � 1 and test it using Euclid’s algorithm.

If the result is 1, take that value as d in step 3. If the result is not 1,

generate a new random value and repeat. Eventually, you will obtain a

good value for d, and you can, in step 4, apply the extended version of

Euclid’s algorithm.

In practice, it pays off to combine the two steps by using the extended

version of Euclid’s algorithm in the first place. If the test succeeds,

you have the inverse e right away. If not, you have wasted only a small

amount of time in the extra overhead of the extended algorithm.



computer science 52, rsa encryption 11

Exercise 4.2. Suppose that a has a multiplicative inverse in modulo-n
arithmetic. Prove that a and n are relatively prime.

V Implementation: Details and Pitfalls

We are now prepared to show that we can decrypt encrypted messages.

We can find a pair of large prime numbers p and q, compute n � pq
and ’�n� � �p�1��q�1�, find d which is relatively prime to ’�n�, and

compute the value e for which de � 1 �mod ’�n��. we know that de�1

is divisible by ’�n�, so there is a number k satisfying de � 1� k’�n�.

Recall from Section II that �e; n� is the encryption key and �d; n� is the

decryption key. If m is a plaintext message, then the ciphertext is

c �me mod n:

To decrypt, we compute cd mod n to obtain

cd mod n � �me mod n�d mod n �mde mod n �m1�k’�n� mod n:

The result of Exercise 3.13 tells us that

m �m1�k’�n� �mod n�;

so if 0 � m < n, computing cd mod n gets us back to m, as desired.

But what if m is a long message and not less than n?

Blocking

If m is too long, we can break it into blocks. In effect, we can represent

it in base-n notation.

m �m0 �m1n�m2n2 � : : :�m‘n‘

Each of the blocks, m0 through m‘, are less than n and we can en-

crypt them separately to obtain a sequence c0 through c‘ of cipher-

texts. If we like, we can combine the result into one long ciphertext:

c � c0 � c1n� c2n2 � : : :� c‘n‘:

This simple idea is called the electronic code book mode.

The electronic code book mode is sometimes sufficient, but it has po-

tential weaknesses. For example, if many of the blocks of the plaintext

are identical, as they would be if the message were a graphic with a

large monochrome background, then the many identical ci’s would

reveal something about the plaintext.



computer science 52, rsa encryption 12

An alternative is cipher block chaining. We begin by selecting a ran-

dom value less than n, calling it iv for initialization vector. Then we

compute

c0 � �iv �m0�e mod n, and

ci�1 � �ci �mi�1�e mod n for 0 � i < ‘.

We are “randomizing” each plaintext block before encrypting it. The

ciphertext is the sequence iv, c0, . . . c‘. To decrypt, we reverse the

process. Recall an identity for bitwise xor:
a� �a� b� � b.m0 � iv � �cd

0 mod n�, and

mi�1 � ci � �cd
i�1 mod n� for 0 � i < ‘.

The cipher block chaining mode also guards against a danger when

messages are short. If m is very short, then it is likely that one can

decipher the communication by brute force. In electronic code book

mode, one must replace the trailing zeroes in the last block by random

bits.

Random Number Generators

To carry out a probabilistic algorithm to find primes and inverses, and

to generate the initialization vector in cipher block chaining mode, we

need a source of random data, a random number generator.

A random number generator produces “unpredictable” values. In

reality, software functions use a deterministic algorithm that generates

more or less unpredictable values. Such functions are valuable for

statistical sampling and similar uses, but they are not suitable for

serious cryptographic work.

Most software random number generators start with a seed, a piece of

data that determines the random numbers produced. If one starts with

the same seed, one will get the same sequence of “random” numbers.

To avoid repeating values, programmers will sometimes use the low

order bits of the computer’s clock, representing microseconds, as the

seed.

If someone can discover a seed, or know a few values from a software

generator, they can predict subsequent values and be able to replay,

with some accuracy, the steps in the creation of keys. Further, if

the so-called random values repeat, it may happen that a prime is

repeated. If nA and nB share a prime p, then someone can compute

gcd�nA; nB� � p and compromise

“True” random number generators use natural processes, like cosmic

rays or atmospheric noise, to generate random sequences of bits.



computer science 52, rsa encryption 13

There are several web sites that provide true random numbers. Many

operating systems have programs that generate random bits by collect-

ing “randomness,” or noise, from other processes on the system and

the network.

Since our work on the assignment is only a demonstration of the RSA

method, we will be satisfied with the more convenient pseudo-random

number generators embedded in software.

Bad Keys

Considerable research has gone into the nature of keys, and in par-

ticular, the factorability of n. It turns out that there are some “bad

choices” for keys. For example, if d is small, someone might find it by

a brute-force search. (A small value of e is not a problem, and might

actually speed up the encryption process.) If p and q are close to one

another, then it is possible to factor n efficiently. Further, if p � 1 and

q � 1 contain only “small” factors, then there is another technique to

factor n efficiently.

The lesson is that in cryptography, or computer security more gener-

ally, one must pay close attention to all the details.

VI Security Guarantees

In Section I, we said that encryption and decryption should be “easy”

for those in possession of the key. Decryption without the key should

be “hard.” The security of the RSA encryption system rests on the

belief that finding the prime factors of large integers is “hard.”

If you choose a key in which n is between, say 500 and 1000 bits, it

would probably take someone years or centuries to find the factors. Of

course, you might be careless and choose a bad key, or your adversary

might be (incredibly) lucky and guess a factor, but the chances of

that happening are tiny. If you are uncomfortable with your sense of

security, you can always choose larger primes and produce a larger

value of n.

The time required to factor goes up drastically with the size of n. Each

additional bit in an integer doubles the number of possible values.

The time required by state-of-the-art factoring algorithms does not

increase quite that fast, but adding even ten bits would change a year

into a century.

In the recent past, 1024 bit keys were considered fairly secure. Today,

people are moving to 2048 or 4096 bit keys. As computers get faster,



computer science 52, rsa encryption 14

the size of keys will increase. The choice of key length is made based

on

� an estimate of the value of the data or resource being protected,

and

� an estimate of the computing power of one’s opponent.

No one has proved a lower bound for the time it takes to factor. It

is possible, but would surprise almost all computer scientists, that

someone will discover a fast factoring algorithm.

It is also possible, but unlikely, that someone will discover a way of

deducing �d; n� from �e; n� without factoring n. (To crack an RSA key,

it is actually enough to find ’�n�, but it is only a short step from there

to computing the factors of n.)

Finally, there is the promise—or threat—of quantum computers. A

device built on quantum mechanical principles can, in theory, factor

a b bit number in O�b3� time. Small quantum computers have been

built, and they have factored numbers like 15 and 21. It is unknown

whether the technology will scale up to larger machines.

If someone comes up with a miraculous algorithm, or if large-scale

quantum computers become a reality, the computing world will have

to reject RSA and adopt encryption systems whose security is based on

other “hard” problems.

VII Other Uses of RSA

In this section, we give an overview of some of the other uses of the

RSA ideas. Be aware that the summary is superficial; the real-world

implementations are much more intricate because they need to guard

against many kinds of attacks.

For simplicity in the examples, let us assume that the principals

are A and B, that their public encryption functions are EA and EB

respectively, and that their private decryption functions are DA and

DB . The public and private keys are buried in the functions and are

usually not explicitly stated. When necessary, we will use subscripts on

e, d, and n.

Digital Signatures

It is possible to electronically sign a message, a contract for example.

To sign a message m, party A computes s � DA�m� and sends it to

B. (Notice the use of the private decryption function.) Upon receipt, B



computer science 52, rsa encryption 15

recovers m � EA�s�. This works because encryption and decryption

can be applied in either order. Party B now has the pair �m; s�. It is

irrefutable evidence that A signed the document, because anyone can

verify that m � EA�s�, and A is the only one who could have generated

a value s with that property.

One problem with our description is that it is dangerous to sign

entire messages. Suppose that A intercepted an encrypted message c
sent to B. Then A can find two random looking values u and v with

the property that uv � c �mod nB�. If A asks B to sign u and v ,

then A will have DB�u� and DB�v�. Because decryption is done with

exponentiation, DB�u�DB�v� � DB�uv� �mod nB�, and A will have the

plaintext corresponding to c.

The solution to the problem is that one never signs an actual message.

Rather one signs a value derived from that message. A cryptographic

hash function is a function that computes a message authentication

code from a message. The message authentication code is of fixed

size, typically 160 of 512 bits long. The function is designed so that

it is extremely unlikely that two different messages will correspond

to the same code. You may have seen references to the commonly

used hash functions MD5, SHA-1, and SHA-256. Suppose that H is a

cryptographic hash function. To sign a message m, party A computes

h � DA�H�m�� and sends EB�m; h� to B. Party B now has evidence By �m; h� we mean the simple concate-
nation of the two blocks of bits.that A signed m because EA�h� � H�m�, and A is the only one who

could have generated a value h with that property.

Cryptographic hash functions can also be used to verify the integrity

of a computer file. Often, when you download a file from the internet,

the provider of the file displays the value of one of the hash functions.

You can compute the hash function on the file you received and check

that the hashes match. If they do not match, then the file may have

been corrupted in transmission, or someone may have been replaced

the original file with malware.

Identity and Certificates

The same idea can be used to verify identity. Suppose that A generates

a “message” r which is a block of random bits. Party A sends EB�r� A random block of bits is often called a
nonce.to party B, who recovers r and sends EA�r� back to A. Party A is now

confident that the party on the other side is B, because only someone

who knows DB could have discovered r .

It sounds simple, but there is a problem—one that is also present in

our description of digital signatures. We have been assuming that

everyone knows everyone else’s public key. That may be true within a



computer science 52, rsa encryption 16

small circle of friends, but we need better guarantees in the wilds of

the internet.

We need some way to identify a key with its owner, and for that, we

need a trusted authority. The authority verifies that the key �eA; nA�
is associated with the person (or business or server) A by signing the

message �eA; nA; A�. That signed message is a certificate. Everyone

knows the public key of the trusted authority and can verify the valid-

ity of the certificate. Party A can present that certificate as evidence

that the public key in fact belongs to A.

There are actually many trusted authorities in the world. The largest

one in the United States is Symantec (formerly VeriSign). We com-

puter users never see the authorities’ keys because they are built into

operating systems and browsers.

A real-world certificate contains much more information than the

simple example above. It will, at least, contain an expiration date and

probably much more information. There is a hierarchy of authorities,

with those at a higher lever attesting to the responsibility of others to

issue certificates.

Key Exchange

As we mentioned earlier, RSA and other forms of public key encryp-

tion are computationally intensive. In practice, public key systems

are used only to establish identity and to agree upon a key for a sym-

metric encryption system to be used for the actual communication.

That key is called a session key, and it may be changed at regular

intervals—sometimes as frequently as every five minutes.

Key exchange, and key management more generally, are complicated

subjects. There are many ways in which information can leak out, or

someone can impersonate another. Here is an overly simplified version

of a key exchange system. It assumes that the two parties are already

satisfied with one another’s identity.

Party A creates a session key ksession and sends EB�A; DA�ksession�� to B.

Effectively, A is signing the session key to verify its source. The two

parties now share a key and can use it to communicate privately.

So far, so good. But what if B is not confident that A has chosen a

secure session key? In that case, both parties want a role in selecting

the session key. Party A creates a key kA and sends it to B as above,

and party B responds symmetrically by creating a key kB and sending

it to A. The session key is then the bitwise xor of the two keys, kA � kB .



computer science 52, rsa encryption 17

Communication protocols are used when you access a secure web

service, like amazon.com or a bank, through https. the protocols are

carefully designed and are surprisingly delicate. Shortcomings and

implementation errors are often found and corrected—a reason for

keeping your software up to date. Although complex and sophiasti-

cated, the protocols are made from components like the ones we have

described here.


	Encryption: A Quick Overview
	RSA Encryption: The Recipe
	Mathematical Foundations
	Finding Primes and Inverses
	Implementation: Details and Pitfalls
	Security Guarantees
	Other Uses of RSA

