
Computer Science 52

Digital Logic Circuits

Spring Semester, 2017

In a physical computer, bits are stored as electrical charges, and

boolean operations are evaluated with components called gates. For

each operation, there is a gate that takes in electrical signals encoding

xor

or

and

not

to one or two bits, and produces the corresponding result bit as the

output. (Sometimes a gate will have more than two input nodes. For

and- and or-gates, the behavior of such a gate is clear. Be careful with

other gates, like the xor-gate.)

The symbols for the four most common gates appear at the right.

Gates can be assembled into complicated circuits that carry out com-

putations on many bits. A typical smartphone has a processor with

nearly a billion gates and a memory with several billion bits. We shall

see simple examples of such circuits here and on an Assignment.

I Circuits for Addition and Subtraction

Let us begin with addition. If we are adding two bits A and B, the sum

bit is simply the A� B and the carry bit is A^ B. The circuit below is a

half adder that computes both the sum and the carry.

A
B

carry

sum

Two half adders can be combined to form a full adder which corre-

sponds to one column of an addition operation. The inputs are the

bits A and B and a carry-in bit from the previous column. The results

is the sum bit and a a bit to carry out to the next column.

A
B

carry-out

carry-in

sum

If we want to add n-bit words, we can do it with a circuit constructed

from n full adders, as shown in the top diagram on the right. Each

0

A0
B0

sum0

A1
B1 carry-out

carry-in

sum1

A2
B2

sum2

...

An−1
Bn−1

sumn−1

carry



computer science 52, digital logic circuits 2

box is a full adder that corresponds to one of the n columns in the

addition problem. The carry-in to the low order column is 0, and the

carry-out from the high order column is discarded. The circuit is called

a ripple-carry adder.

If we want to subtract n-bit words, we use a slight modification of the

ripple-carry adder. Recall that subtraction is negation followed by ad-

dition and that negation is complementation followed by adding one.

The bit D in the circuit on the right controls whether the operation is
D

A0
B0

result0

A1
B1 carry-out

carry-in

result1

A2
B2

result2

...

An−1
Bn−1

resultn−1

carry

addition or subtraction. If D is zero, the circuit behaves just like the

ripple-carry adder on the left. If D is one, the circuit computes the

sum of the A bits, the complement of the B bits, and 1. That operation

amounts to subtraction.

Notice the xor-gate modifying the carry when the circuit is subtracting.

That allows the bit to signify a “borrow” into the high-order bit and

ensures that the bit is the correct value for the C flag.

II Decoders

Another example of a basic circuit is a 2-bit decoder, pictured below.

You can think of it as a binary to unary converter. There are two in-

puts and four outputs. Exactly one of the outputs will be 1. Which one

is determined by the value, in binary, of the two inputs. As illustrated,

the input value d1d0 is 01, and the output t01 is 1.

The image of a decoder is taken from
Logisim, a software tool that we will
be using. The dark green wires carry a
value of 0, and the bright green ones
carry a value of 1. The squares are
input nodes, and the circles are output
nodes.

2-1 decoder (1 of 1)

t10

0

t00

0

d1 0

d0 1

t01

1

t11

0

It is not hard to generalize the idea to a k-bit decoder, which has k
input nodes and 2k output nodes. There is one output node for each

row in a truth table with k variables.

Decoders provide a general idea for generating many kinds of circuits.

As an example, consider the segment display found on many alarm

clocks and digital watches. There are seven elements, as shown on the

left in the illustration below. Different combinations of the elements

may be illuminated to display the hexadecimal digits shown on the

right.

We use lowercase b and d to distinguish
them from 8 and 0. We use lowercase
c because it looks better along side the
other letters.



computer science 52, digital logic circuits 3

0

1 2
3

4 5

6

Suppose we want to create a circuit that determines whether seg-

ment 1, on the upper left, is illuminated. The input to our circuit

consists of four nodes, representing the value of the hexadecimal digit

to be displayed. we create a 4-bit decoder with four input nodes and

sixteen output nodes, numbered from 0x0 through 0xF, one for each

of the possible digits. Segment 1 is illuminated when the digit is

0, 4, 5, 6, 7, 8, 9, A, B, E, or F.

We attach the corresponding eleven output nodes of the decoder to an

or-gate, and the output of the or-gate will be 1 when segment 1 is to

be illuminated. We could create a separate circuit for each of the other

segments of the display, but there is no need for more decoders. We

can attach the output nodes of a single decoder to different or-gates to

obtain the nodes controlling the seven segments of the display.

The resulting circuit is simple in the
sense that it has only a few gates—four
not-gates and seven (multi-input) or-
gates. But it is complicated in the sense
that there are many connections. One
must take care in drawing such a circuit
to avoid excessive entanglement.III Minterm Expansion

Any logical operation on several values can be described with a truth

table. The hexadecimal display example leads us to a technique for

converting a truth table into a circuit.

Given a truth table, build a decoder-like circuit, but include only those

and-gates and output nodes that correspond to rows of the truth table

for which the output is 1. Then connect all the outputs of the and-

gates to an or-gate to produce the single output value. For example, if

one row of a truth table is

x1

1

result

1

x0

0
x2

0

x0 x1 x2 result
...

0 1 0 1
...

then a portion of the minterm circuit would look like the one on the

right. Notice that we have reoriented the circuit to place the inputs at

the top.

The minterm technique gives us the power to create any possible

logical circuit. The circuit will always have a depth of three. That

means that any signal has to pass through at most three gates to reach

the output. The depth is significant because it takes a signal some

period of time to propagate through a gate. The more gates there are,



computer science 52, digital logic circuits 4

the longer it takes. With a maximum of three gates along any path, the

circuit responds quickly.

On the other hand, the minterm technique produces circuits with

lots of gates, which affects the total power consumption and the

reliability of the circuit. There are many methods, some manual and

some automated, that are used by computer designers to minimize the

number of gates in a circuit. We will not delve into those techniques in

this course.

Another way to think of the technique is as a way to convert a truth

table into a boolean formula. The formula will be a disjunction of

“minterms,” each of which is the conjunction of variables and nega-

tions of variables. Such a formula is said to be in disjunctive normal

form.

There is also a maxterm expansion technique that produces circuits

with many or-gates and a single and-gate to produce the output. The

corresponding formula is a conjunction of “maxterms,” each of which

is a disjunction of variables and their negations. That formula is in

conjunctive normal form. You will encounter conjunctive normal form

in more advanced computer science courses.

IV A Memory Circuit

Because a computer performs a sequence of operations, there must

be a way of storing the result of one step for use in a later step. The

circuit below is a one-bit memory, called a clocked D-latch.

V

D

clock

X

The circle at the output of the or-gate indicates that the result is

negated. The operation is called nor. Although the operation is easy to

state, the mechanism may be a little difficult to understand.

The line labeled clock is normally 0. While it is 0, the output line V
maintains a value that does not change. It can be used as input to

other circuits, possibly over a long period of time. The value of V is

changed by raising the clock signal momentarily. When that happens,

V takes on whatever value is on the input line D. As with an adder,

it is easy to imagine several latches connected in parallel to provide

memory for a word.



computer science 52, digital logic circuits 5

Why does the clocked D-latch work? One could trace through the

circuit with all possible values of D, clock, and V , but that is confusing

and unenlightening. An alternative is to translate to logical formulas

and use some identities. For notational convenience, let us use C for

the clock signal and V for the output. Let X be the output of the top

nor-gate as indicated above. The outputs of the two and-gates are D ^ C
and :D ^ C , so we have

X � �D ^ C� nor V
V � �:D ^ C� nor X

(1)

When C is 0, the outputs of both and-gates are also 0. Using the

identity 0 nor A � :A, which is easy to check, the equations become

X � :V
V � :X

This is the stable situation mentioned above.

When C is true, the equations (1) become

X � D nor V
V � :D nor X

This is an application of the identity A ^ 1 � A from Table 1 in Bits,

Words, and Integers. Because working with nor is unintuitive, we use

another easily-checked identity, A nor B � :A ^ :B, to rewrite the

equations.

X � :D ^:V
V � D ^:X

Eliminate X by substituting the right-hand side of the first equation for

X in the second, and use a DeMorgan law to obtain

V � D ^:�:D ^:V� � D ^ �D _ V�:

Truth tables now tell us that the only way that this can hold is if

V � D, which is what we claimed happens when the clock signal is

high. When the clock goes low again, V retains its value.

This kind of memory is usually used on the processor unit itself.

It is too complicated and expensive to be used for the computer’s

main memory. The random access memory on a computer is usually

implemented with simple capacitors that store an electrical charge.

Appendix: Transistors

Although most computer scientists can function quite well without

knowing exactly how gates work, it is interesting to go one level deeper

into the physical computer. Most gates are constructed from semi-

conductor devices called transistors. A transistor is a kind of switch,



computer science 52, digital logic circuits 6

shown as the circular object in the diagram on the right. The signal

base

collector

Vref

emitter

resistor

ground

on one wire, called the base, controls the current flowing between two

other wires, the collector and the emitter.

In digital circuits, there are only two relevant voltages—low and high.

They are the ones at the points marked ground and Vref, respectively,

in the diagram above. In other applications, like stereo sound equip-

ment, transistors are used as amplifiers, and the variations in the

signal at the base are reproduced with greater magnitude at the collec-

tor.

We take the voltage at the point marked “ground” to be zero, and sup-

ply a higher voltage at Vref. When the voltage at the base is near zero,

there is no connection between the collector and the emitter, and the

voltage at the collector is close to the reference voltage. Conversely,

when the voltage at the base is high, current can flow between the

collector and the emitter. The collector is effectively attached to the

ground, and the voltage level is zero there.

The two voltage levels can be interpreted as bits, with the ground state

being 0 and a reference voltage being 1. When the base of a transistor

is 0, the collector is 1, and vice versa. Under this interpretation, the

transistor illustrated above is a not-gate whose input is the base, and

output is the collector. With two transistors, we can construct nor- and

nand-gates, as shown in below.

A

not A

Vref

B

A

A nand B

Vref

A B

A nor B

Vref

Using nor, not, and nand and the logical identities like those in Table 1

of Bits, Words, and Integers, one can construct all the gates that we

have discussed. With a large enough supply of transistors, one can

construct a computer. In the year 2000, a processor chip had about

twenty million transistors—give or take a factor of four. Today, a

typical number is a few billion.


	Circuits for Addition and Subtraction
	Decoders
	Minterm Expansion
	A Memory Circuit

