
Computer Science 52

Bits, Words, and Integers

Spring Semester, 2017

In this document, we look at how bits are organized into meaningful

data. In particular, we will see the details of how integers are repre-

sented in a computer.

I Bits and Data

The basic unit of information in a computer is the bit; it is simply a

quantity that takes one of two values, 0 or 1. A sequence of k bits is a

k-bit word. Words have no intrinsic meaning beyond the value of the

bits. We can assign meaning to words by interpreting them in various

ways. Depending on the context we impose, a word can be viewed as

an integer, as a boolean value, as a floating point number, as a string

of letters, or as an instruction to the computer.

We refer to the possible values of a bit in several ways:

� 0 and 1,

� false and true,

� ? and > (pronounced“bottom” and “top”),

� low and high, or

� unset and set.

The last two pairs are usually used only when working with circuits, a

topic that we will encounter later. You will find yourself using many of

these words at various times, depending on the context.

A byte is an 8-bit word. Memory in modern computers is arranged as

a sequence of bytes, and adjacent bytes are considered to be longer

words. As we shall see shortly, bytes can be viewed as the binary

representations of integers ranging either between 0 and 28 � 1 or

between �27 and 27 � 1.

II Operations on Bits

We can operate on bits in much the same way that we can add, sub-

tract, and multiply numbers. The system is called boolean logic, and

here are the common operations.

� : means “not” or “(boolean) negation.”

� ^ means “and.”

computer science 52, bits, words, and integers 2

� _ means “(inclusive) or.”

�) means “implies” or “not greater than.”

� � means “exclusive or” or “unequal.” and

� � means “equivalent” or “equal”

The operation : is unary, meaning that it is applied to a single bit.

The other operations are binary, and the operator symbol is placed

between the two arguments—just like � and �.

The actions of the connectives are specified using truth tables. (Re-

member that we identify 0 with “false” and 1 with “true.”) The table

for : is simple.

A �:A�
0 1

1 0

The tables for the other operations are only a little more complicated.

In general, the result of the operation corresponds to our understand-

ing of the words we use for the operation: “and,” “or,” and so on.

A B �A^ B� �A_ B� �A)B� �A� B� �A � B�
0 0 0 0 1 0 1

0 1 0 1 1 1 0

1 0 0 1 0 1 0

1 1 1 1 1 0 1

We adopt the convention that, in the absence of parentheses, the

operation : is done first, followed in order by ^, �, _,), and �.

The truth tables for the connectives can be used to evaluate logical

expressions. For example, we can verify one of the de Morgan laws,

:�A^ B� � :A_:B;

by writing out a truth table for each side of the equality.

A B �A^ B� :�A_ B�
0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

and

A B �:A� �:B� �:A_:B�
0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

The identical results in the last columns show that the two expressions

always have the same value. There are many such identities. Table 1

shows some of the common ones.

computer science 52, bits, words, and integers 3

A_ 1 � 1

A_ 0 � A

A� 1 � :A

A� 0 � A

A � ::A

A � A^A

A_:A � 1

A)A � 1

A�:A � 1

A_ B � B _A

A � B � B � A

A� B � B �A

A_ �B _ C� � �A_ B�_ C

A � �B � C� � �A � B� � C

A_ �B ^ C� � �A_ B�^ �A_ C�

A_ �A^ B� � A

A � B � �A)B�^ �B)A�

A)B � :A_ B

A_ B � :�:A^:B�

A_ B � :A)B

A^ 1 � A

A^ 0 � 0

1)A � A

0)A � 1

A)1 � 1

A)0 � :A

�:A)B�^:B � A

A � A_A

A^:A � 0

A � A � 1

A�A � 0

A^ B � B ^A

A)B � :B):A

A^ �B ^ C� � �A^ B�^ C

A� �B � C� � �A� B�� C

A^ �B _ C� � �A^ B�_ �A^ C�

A^ �A_ B� � A

A� B � :�A � B�

A)B � :�A^:B�

A^ B � :�:A_:B�

A^ B � :�A):B�

Table 1: Some common identities of
boolean logic.

computer science 52, bits, words, and integers 4

III Words as Integers

Words often represent integers. There are two commonly-used ways to

interpret words as integers. Unsigned integers represent non-negative

values, while signed integers include negative values.

Unsigned Integers

A k-bit word can be interpreted as an unsigned integer by viewing

the bits as the “digits” in a binary expansion. Normally we take the

right-most bit as the least significant, or the “ones place.” If the word

is bk�1bk : : : b1b0, then the value of the unsigned word is

2k�1bk�1 � 2k�2bk�2 � : : :� 2b1 � b0 �
k�1X
i�0

2ibi:

Unsigned k-bit integers range between 0 and 2k � 1, inclusive. The

operations on unsigned integers are the arithmetic ones: addition,

subtraction, multiplication, division, remainder, etc. There are also the

usual comparisons: greater, less, greater or equal, and so forth.

Often, people make no distinction between a word and the unsigned

integer it represents. One use of unsigned integers is to specify loca-

tions, or addresses, in a computer’s memory.

Signed Integers

A k-bit word can also be interpreted as a signed integer in the range

�2k�1 through 2k�1 � 1. The words that have a most significant, or

leftmost, bit equal to 1 represent the negative values. The leftmost bit

is called the sign bit. The signed value of the word bk�1bk : : : b1b0 is

�2k�1bk�1 � 2k�2bk�2 � : : :� 2b1 � b0 � �2k�1bk�1 �
k�2X
i�0

2ibi:

The difference between the unsigned value and the signed value is the

minus sign on the largest power of two. Notice that the word “signed”

does not mean “negative.” The signed interpretation gives us positive

and negative values.

This representation of signed integers is called two’s complement.

Other representations of signed integers exist, but they are rarely used.

The programming languages Java and SML use two’s complement

signed integers exclusively. The programming languages C and C++

have both signed and unsigned integer types.

A word may be interpreted as an unsigned integer or a signed one—the

two values may or may not be the same. The table at the right shows

computer science 52, bits, words, and integers 5

the 3-bit words that represent small integer values. It is easy to scale

up the table to include more bits. Notice that the signed value of the

integer unsigned signed
7 111
6 110
5 101
4 100
3 011 011
2 010 010
1 001 001
0 000 000
�1 111
�2 110
�3 101
�4 100

word with all 1’s is �1.

Interestingly, addition and subtraction can be carried out on unsigned

and signed interpretations using the same algorithms. We simply use

the binary analogs of the usual methods for adding and subtracting

decimal numbers. Other operations, like comparisons and multipli-

cation, require different methods—depending on whether we are

thinking of the values as unsigned or signed.

Negation and Sign Extension

To negate a two’s complement signed value, simply add one to the

bitwise compliment of the word. (Verification: Let x be a k-bit word

and x be its bitwise complement. The sum x � x is a word with all 1’s,

whose value as a signed integer is �1. Therefore, x � x � �1, so that

x � 1 � �x.)

We sometimes want to convert a k-bit word into a j-bit word, with

j being greater than k. If we are thinking of the words as unsigned

integers, we just add zeroes on the left. If we are thinking of them as

signed integers, then we copy the sign bit on the left as many times

as necessary to create the longer integer. The latter process is called

sign extension, and it yields a longer (more bits) word representing the

same signed integer. For example, �3 is represented in three bits by

101 and in six bits by 111101.

To convince yourself that sign extension actually preserves the signed

value, consider the case of adding just one bit. The lefthand part of

the expression for the signed value changes

from �2k�1bk�1 � : : :
to �2kbk � 2k�1bk�1 � : : :,

and the bits bk�1 and bk are the same. If those bits are both 0, then

the lefthand subexpressions above are both zero. If the bits are both 1,

then the subexpressions are both �2k�1. Either way, the signed value

does not change.

Words in Modern Computer Systems

Most current processors use 32- or 64-bit words as their basic unit of

data, with the 64 bits becoming increasingly common. In our examples,

we use fewer bits to make our examples easier, but the ideas are the

same.

computer science 52, bits, words, and integers 6

Programming languages and systems use different size words for

different purposes, and unfortunately, there is considerable variation

from one language or system to another. A byte, however, is always

8 bits.

In Java, a short is a 16-bit integer quantity, an int has 32 bits, and a

long has 64. All of these are interpreted as signed.

In C, the number of bits in a short, int, and long can vary across

different computers, but nowadays, C usually agrees with Java. Any of

these can be given signed or unsigned interpretation.

Addition

As mentioned earlier, the process of addition is the same for unsigned

and signed quantities. The addition

010

�001

011

is correct whether we are thinking of unsigned or signed numbers.

However, sometimes a result is “out of range,” the conditions for

which differ depending on how we interpret the numbers. The addition

011

�110

001

is a correct instance of binary addition. The “carry out” from the left-

most bit is discarded. With unsigned integers, the result is erroneous;

the result of the sum 3� 6 is out of the range of three-bit integers. On

the other hand, with signed integers, the addition is 3 � ��2� and the

result is correct. Contrastingly, the result of the addition

011

�010

101

is correct for the unsigned interpretation, but in the signed case, it

adds two positive values and obtains a negative one. Colloquially, such

problematic situations are termed “overflow.” Below, we discuss ways

to detect it.

Subtraction

Subtraction is simply negation followed by addition. One complements

the bits in the number to be subtracted and then adds with an extra

“carry” into the low order bit. Thus

computer science 52, bits, words, and integers 7

011

�010

001

becomes

1

011

�101

001

The “carry out” from the leftmost column is discarded. This method

for subtraction is correct in both the unsigned and signed cases. As in

the case of addition, there is the opportunity for erroneous results due

to “overflow.”

Overflow and comparisons

When addition is performed on many computers, four one-bit quanti-

ties (besides the usual result) are produced:

C is the the carry-out bit out of the leftmost column

Z is 1 if result is zero and 0 otherwise,

N is the sign bit of result, and

V is 1 if there is “signed overflow” and 0 otherwise.

“Signed overflow” means that two quantities with the same sign pro-

duce a sum with the opposite sign.

For subtraction, the bits are set similarly, except that C is the “borrow

bit,” which is set if the subtraction requires a borrow into the leftmost

column. Signed overflow for the subtraction x �y means that x and y
have different signs, and the sign of x �y is different from x.

The flags allow us to compare integer values. When two quantities are

subtracted, the flags will tell us whether the first was less than, equal

to, or greater than the second. Any decision about the comparison can

be based entirely on the flags; the actual result of the subtraction is

not required.

To compare two unsigned integers, one subtracts the quantities, dis-

cards the result, and observes the flags. For unsigned interpretations,

x < y when there is a “borrow” into the leftmost column upon com-

puting x �y . That corresponds to the condition C � 1. We see that

x < y if C � 1,

x � y if C � 1 or Z � 1,

x � y if Z � 1,

x 6� y if Z � 0,

x � y if C � 0, and

x > y if C � 0 and Z � 0.

For signed integers, we compute x � y in a similar fashion and use a

different interpretation of the values of the flags:

computer science 52, bits, words, and integers 8

x < y if N � V � 1,

x � y if Z � 1 or N � V � 1,

x � y if Z � 1,

x 6� y if Z � 0,

x � y if N � V � 0, and

x > y if Z � 0 or N � V � 0.

To see why these conditions are correct, consider the example of

x < y . The result N � V � 1 means N 6� V , which is to say that the

result x �y is negative and correct, or it is non-negative and incorrect.

Either way, x < y .

IV Hexadecimal Notation

A k-bit word can be written as a sequence of k zeroes and ones, but

that representation is long and awkward. An alternative is to take

the unsigned value of a word and write it in hexadecimal, base 16.

It is convenient because a group of four bits corresponds to one

hexadecimal “digit.”

The digits are the usual decimal digits 0 through 9 followed by the

letters A through F. To convert a multibyte word to hexadecimal,

simply divide the bits into groups of four and write their values as

hexadecimal digits. For example,

0011 1011 1110 0100

is 3BE4 in hexadecimal. Hexadecimal representations are often pre-

fixed by 0x to distinguish, for example, 0x15 from the decimal value

15.

When working with hexadecimal notation, avoid the temptation to

convert to decimal, do a calculation, and convert back to hexadecimal.

It takes too long, and there is a tremendous chance for error. Instead,

consider doing the calculation by hand in hexadecimal. With a little

practice, you will find it easy for addition or subtraction. Or, you can

find a hexadecimal calculator; they are common on the internet.

V Other Operations on Words

In addition to the arithmetic operations, we have shifts and bitwise

logical operations on words. Most programming languages provide

these operations.

A left shift shifts the bits to the left. The most significant bits are lost,

and zeroes are shifted in on the right. For integers, a left shift is a

computer science 52, bits, words, and integers 9

handy way to multiply by a power of two. It does not matter if we are

imposing an unsigned or a signed representation. Java and C++ use the

notation x<<k to shift the bits in x to the left by k places, effectively

multiplying by 2k.

A logical right shift moves the bits to the right. The least significant

bits are lost, and zeroes are shifted in on the left. For unsigned inte-

gers, the logical right shift is the equivalent of dividing by a power of

two and discarding the fractional part.

An arithmetic right shift also shifts bits to the right, but the new

bits on the left are copies of the sign bit. An arithmetic right shift

preserves the sign of the original word, and it is a handy way to divide

a signed integer by a power of two.

Java uses the notation x>>>k for the logical right shift of x by k places

and x>>k for the arithmetic right shift. The programming language

C has only one right shift operator, >>. Most C compilers choose the

arithmetic right shift when the first operand is a signed integer and

the logical right shift when the first operand is unsigned.

As we mentioned, a sequence of k bits is a k-bit word. The operations

of propositional logic may be applied to words, in which case they

operate on the bits in parallel. For example, the negation of the three-

bit word 011 is 100, and the result of an and-operation on 011 and

100 is 000. The study of these operations is called “digital logic.”

Many programming languages use the ampersand & to refer to the the Do not confuse the bitwise logical
operators & and | with the boolean
operators && and ||.

bitwise and-operation, and | for the bitwise or-operation. Often ^ is

used for the bitwise xor-operation.

There are many times when bitwise operations are handy. For example,

two k-bit words w and x are equal if

w ^ x

yields a word with all zeroes.

Remember that the low order bit of an odd integer is 1, so the integer

represented by the word w is odd exactly when

w & 1

is not zero. Similarly, the high order bit of a word representing a

signed integer is 1 when the integer is negative. We can test for a

negative value in a k-bit word w by seeing if

w & (1<<(k-1))

is non-zero.

computer science 52, bits, words, and integers 10

VI Other Kinds of Data

So far, we have seen numbers: signed and unsigned integers and

floating point numbers. The common non-numeric data types are

characters, strings, boolean values, and pointers.

Characters are represented as integers, with a mapping between the

letters and the numbers that represent them. One common encoding

is ASCII, which represents characters with a single byte. In that system,

the byte 0011 0100 is the character 4 (not to be confused with the

integer 4), and 0110 1101 is the lower-case letter m. The specifics of

the correspondence are usually not important.

In recent years, people have recognized the limitations of the small

size of the ASCII character set. An alternative is the Unicode encoding,

which uses sixteen bits and has a much richer collection of letters.

Java uses the Unicode system, and its primitive data type char is a

sixteen-bit unsigned integer.

The boolean values, false and true, can be represented by single bits,

but on most computers it is inconvenient to work with a data object

smaller than a byte. Most frequently, boolean values are full words,

the same size as integers. Usually the word with all 0’s corresponds

to false and any non-zero word corresponds to true. Other words

may or may not correspond to boolean values. The operators && and

|| are commonly used to refer to the logical operations on boolean

values represented in this way. (In C, there is no specific boolean

type. That language uses the type int, interpreting zero as false and

any non-zero value as true. C++ recognizes the same convention, but

recently the bool type was added to the language, and programmers

are encouraged to use it.)

As we shall see in another part of the course, the memory in a com-

puter is simply an array of bytes. Pointers are usually (but not always)

interpreted as indices into that array. That is, a location in memory

by counting the number of bytes from the beginning, and a pointer is

an unsigned integer which signifies a location. It is a matter of some

debate whether or not a programmer should make extensive use of

this representation.

Arrays are formed by placing the elements next to one another in

memory. Strings can be viewed as arrays of characters, and in many

programming languages they are exactly that. In other languages,

strings are have a more sophisticated representation.

Keep in mind that words are simply sequences of bits. They have no

meaning until we impose a representation on them. A word has a

computer science 52, bits, words, and integers 11

value when interpreted as a signed integer and a completely different

meaning when interpreted as, say, a string.

Appendix: Floating-Point Numbers

Many numbers that we encounter in our computations are not inte-

gers; they have fractional parts. For completeness, we describe the

representation that most computers use for numbers that are not

integers.

We introduce a “binary point” that is used analogously to a decimal

point. The expression �10011:110012 is the binary representation

for�19:7812510. The positions to the right of the binary point rep-

resent 1=2, 1=4, 1=8, and so on, so that the fractional part :11001

corresponds to 1=2� 1=4� 1=32. We can write the number as

�1:001111001� 24:
A binary purist would have written the
exponential part as 102

1002 , but that
seems excessively cumbersome.

These numbers are called floating-point because the binary point

“floats” according to the exponent. Unless the number under consider-

ation is zero, we normalize the presentation so that there is a single 1

to the left of the binary point.

Single and Double Precision

A number in binary scientific notation is determined by its sign, frac-

tion, and exponent. Most computers now use IEEE Standard 754, which

specifies a format for storing these three quantities. There are two

variants of the standard: single precision and double precision. They

correspond to float and double, respectively, in Java.

The single precision format uses four bytes, or 32 bits: one bit for the

sign, eight bits for the exponent, and 23 bits for the fractional part.

The sign bit is 1 if the number is negative and 0 otherwise. The sign bit

is followed by the eight bits for the exponent, and then the fractional

part is placed in the remaining bits, padded with 0’s on the right if

necessary.

The exponent is a signed value, but it is not represented as a two’s

complement integer. Instead it uses the excess 127 representation. The

value of the exponent is the unsigned value of the eight bits minus

127. In this representation, the exponent can take on values from

�127 through 128.

The number in the example above would have the single precision

representation

1 10000011 00111100100000000000000:

computer science 52, bits, words, and integers 12

The actual unsigned value of the eight exponent bits is 13210; sub-

tracting 127 gives the actual exponent of 4. Note that only the fraction

proper, and not the 1 to the left of the binary point, appears. That

allows us to squeeze one extra bit of precision into the 32-bit single

precision number.

The double precision format is similar, except that it uses eight bytes.

The sign still takes only one bit. The exponent occupies 11 bits using

excess 1023 representation, and the remaining 52 bits are devoted

to the fraction. With a larger possible exponent and more bits in the

fraction, double precision numbers can have larger values and more

“significant figures” than single precision ones. Table 2 compares the

two formats.

Notice in subsection 2 that the exponent range for single precision

is from �126 to 127, not �127 to 128 as might be expected. The two

extreme exponents are reserved for special purposes. Table 3 shows

the five forms of floating-point numbers: normalized, denormalized,

zero, infinity, and not a number.

The normalized form is the one that we have been describing so far.

Let B be the “excess” amount in the representation of the exponent; it

is sometimes called the bias. In the case of single precision, B � 127.

The floating-point number

sign exponent fraction

is in the normalized form if the exponent does not consist of all 0’s or

all 1’s. It has the value

�1:fraction� 2E�B ;

where E is the unsigned value of the exponent bits. As always, the

value is negative if the sign bit is 1.

Single Precision Double Precision

Sign bits 1 1

Exponent bits 8 11

Fraction bits 23 52

Exponent system excess 127 excess 1023

Exponent range �126 to 127 �1022 to 1023

Largest normalized about 2128 about 21024

Smallest normalized 2�126 2�1022

Smallest denormalized about 10�45 about 10�324

Decimal range about 10�38 to 1038 about 10�308 to 10308

Table 2: A summary of the two types of
IEEE floating-point numbers. (Adapted
from Tanenbaum, Structured Computer
Organization, Prentice-Hall, third
edition, 1990.)

computer science 52, bits, words, and integers 13

Sign Exponent Fraction

Normalized � 0 < exp < max any

Zero � 0 zero

Denormalized � 0 non-zero

Infinity � max zero

Not a number � max non-zero

Table 3: The five forms for floating-
point numbers. The values in the
exponent column are the unsigned
values, ranging from 0 to a maximum
of 11 : : : 12. (Also adapted from Tanen-
baum.)

The zero form is the representation for the number zero. All bits,

except perhaps the sign bit, are zero. There are two representations

of zero, one “positive” and the other “negative.” A computer must be

designed to recognize that they are the same.

The denormalized form provides a way to represent much smaller

positive numbers than would otherwise be possible. The sign bit

and the exponent, which consists of all 0’s, are interpreted as in the

normalized case. The difference is that, with denormalized numbers,

the bit to the left of the binary point is taken to be 0 instead of 1. The

smallest positive value that can be represented in single precision has

the denormalized representation

0 00000000 00000000000000000000001;

which translates to

�0:00000000000000000000001� 20�127:

There are 23 fraction bits, so the number is 2�150, quite a bit less than

the smallest normalized positive number of 2�126.

The two remaining forms, infinity and not a number, arise as the result

of overflow or other errors. The IEEE standard specifies the results of

operating on these as well as the more conventional forms.

Numerical Computations

Arithmetic on floating-point numbers is analogous to arithmetic on

numbers expressed in decimal scientific notation. For addition, one

must shift the binary point of one term so that the exponents are

the same before adding. This requires the disassembly of the sign,

exponent, and fraction part before the operation and subsequent

reassembly. Usually, the calculation is carried out by specialized hard-

ware. Other operations on real numbers, like the calculation of square

roots and trigonometric functions, are done using approximation

techniques.

The finite range and precision of floating-point numbers can cause

errors that would not arise if one were working with perfectly exact

computer science 52, bits, words, and integers 14

mathematical objects. An entire branch of mathematics, numerical

analysis, is devoted to studying computation with these approxi-

mations that we call floating-point numbers. In this section, we are

content to indicate a few of the most common considerations.

Although we sometimes talk about floating-point “reals,” many of the

usual mathematical laws for real numbers fail when applied to floating-

point numbers. For example, the associative law �x�y��z � x��y�z�
does not hold for floating-point; can you find a counterexample?

The order of operations makes a difference. The expression

�1� 2�26 � 2�26 � : : :� 2�26| {z }
226 terms

is zero mathematically, but the result will be �1 if it is computed from

left to right with single precision numbers. Individually, the terms on

the right are too small to change the �1. It does not help much to start

at the right, either; the result is �0:75 in that case.

Even in the best of cases, floating-point results will be approximations.

This is because of small errors that creep in when input values are

converted from decimal to binary and round-off errors that can occur

with every calculation. A result of this observation is good advice:

Never test floating-point numbers for equality! Two numbers may be

mathematically equal, but as results of floating-point computations,

the bit patterns will be slightly different. Instead of asking whether x
and y are equal, always ask whether jx � yj is less than some (small)

positive tolerance.

	Bits and Data
	Operations on Bits
	Words as Integers
	Hexadecimal Notation
	Other Operations on Words
	Other Kinds of Data

