
Computer Science 52

Final Examination: Topics and Sample Problems

Spring Semester, 2015

In examinations the foolish ask questions that the wise cannot
answer. —Oscar Wilde, 1894

Time and Place Wednesday, May 13, 9:00 am to noon, in Edmunds 114.

Topics

SML and Functional Programming
Recursion (all kinds, including use of accumulators)
Type signatures and type checking
Functional style and pattern-matching
Higher-order functions, like map and fold
Anonymous functions
Data types, including recursive ones
Exceptions
Correctness
Lazy structures

Concepts
Induction (all kinds)
O-notation

Models of Computation
Bits and propositional logic
Circuits and gates
Integers and words, unsigned and signed representation, bit-wise operations
CS41B, including memory and addresses, subprograms, and stack frames
Alphabets and languages
Finite automata
Turing machines

Applications
cs52int
Coding and RSA
Exhaustive search

Sample Problems These problems are provided to give you an idea of the
kinds of problems that will appear on the exam. They give you an opportunity
to practice and to test your knowledge.

However, they are not complete, in that they do not cover every conceivable
part of the course. Also, many of the exercises are longer or less precisely-
worded than real exam problems. One problem is completely irrelevant.

1. A queue is a data structure in which insertions are done on one end of a
list and deletions on the other. The acts of insertion and deletion are called
“enqueue” and “dequeue,” respectively.

a. Here is a naive implementation of a queue, using a SML list.

exception EmptyQueue;

fun enqueue elt queue = queue @ [elt];

fun dequeue nil = raise EmptyQueue;

| dequeue (first::rest) = (first, rest);

The idea for dequeue is that it returns a pair—the element that was removed
and the resulting queue. Suppose that someone starts with an empty queue,
carries out n enqueue operations and then n dequeue operations. What is
the time complexity of that process? An answer in O-notation is acceptable.

b. A more e�cient implementation of a queue is to represent the queue as a
pair of lists. The enqueue operation puts a new element on the front of the
first list. The dequeue operation acts on the first element of the second list.
If second list is empty when a dequeue operation is attempted, the second
list is replaced by the reversal of the first list. Write the functions enqueue

and dequeue for this implementation.

c. For your implementation in part b, what is the time complexity of the
process of inserting n elements into an empty queue and then removing
them?

2. A stack is a data structure in which insertions and deletions are done on
the same end of the list. The words “push” and “pop” are used for insertion

and deletion, respectively. Normally, the pop operation returns the element
that has just been removed from the data structure.

Use SML lists to implement a stack three functions: isEmpty, push, and pop.
Write pop so that it returns the element removed and the new stack, as you
did above for a queue.

3. Consider the following SML data structure. It is essentially a binary tree
with operations at the internal nodes and numbers at the leaves.

datatype aExpn = NUMBER of int

| ADDN of aExpn * aExpn

| SUBTR of aExpn * aExpn

a. Write an SML function that evaluates such an expression.

b. Write another SML function that translates such an expression into a
fully-parenthesized algebraic expression, like "((1+23)-(32-9))".

4. Consider an SML data structure for expressions in propositional logic in
which the variables are indexed by integers: v0, v1, v2,

datatype pExpn = FALSE

| TRUE

| VARIABLE of int

| NOT of pExpn

| AND of pExpn * pExpn

| OR of pExpn * pExpn

a. Write an SML function vlist that, given a pExpn, returns a list of the
variables in the expression.

b. Write an SML function simplify that simplifies an expression by removing
unnecessary instances of the constants FALSE and TRUE. It will replace, for
example,

• NOT TRUE with FALSE,

• NOT FALSE with TRUE,

• AND(TRUE,anything) with anything,

• AND(FALSE,anything) with FALSE,

• OR(FALSE,anything) with anything, and

• OR(TRUE,anything) with TRUE.

c. Write an SML function substitute that accepts a pExpn, a variable, and
another pExpn and substitutes the second expression for every occurrence of
the variable in the first expression. For example,

• substitute (VARIABLE 3) (VARIABLE 3) TRUE returns TRUE, and

• substitute expn (VARIABLE 5) any returns expn unchanged, if
VARIABLE 5 does not appear in expn.

• substitute (AND (VARIABLE 3, u)) (VARIABLE 3) v returns
(AND (v,u)).

d. A logical expression is satisfiable if there is some assignment to its variables
that makes the expression true. Using the functions that you have written,
write an SML function isSat that tells whether a pExpn is satisfiable. Observe
that an expression without variables simplifies to FALSE or TRUE, and an
expression e with variable VARIABLE k is satisfiable if and only if one of the
following is satisfiable.

substitute e (VARIABLE k) FALSE

substitute e (VARIABLE k) TRUE

5. What is an exception? What happens when one is raised? Give some
examples of when an exception should (or should not) be used.

6. Let A and B be two sets of ordered pairs. The set-theoretic join of A and
B is the set of all pairs (s, t) such that there is an element u with (s, u) in A
and (t, u) in B. Write an SML function that computes the join of two lists of
pairs. It will have the type signature

join : (’a * ’’c) list -> (’b * ’’c) list -> (’a * ’b) list

Motivation: The join described here is a simplified version of a common
operation on databases. Think of A as representing classes and times; a pair
(c, h) is in A if c is a class that meets at time h. Then the join of A with itself
is a list of pairs of classes that conflict with each other.

7. A relation is a set of ordered pairs. A relation R is transitive if, whenever
(a, b) and (b, c) are in R, the pair (a, c) is also in R. In SML, we can think of
a list of ordered pairs instead of a set.

a. Assume that the member function is present, and write an SML predicate
that identifies transitive relations.

b. What is the complexity of your predicate?

8. Write a function that takes a string u and another string v and creates a
new string by substituting v for every occurrence of the character #"X" in
u. Assume that the character #"X" does not appear in v. This is a simple
version of the “textual transformation of programs” that could be done with
a Turing machine.

9. Although the list [1,[2,3]] is a conceptually-natural object, the strict
type-checking in SML will not accept it. One cannot mix integers and lists of
integers in the same list. We can circumvent the limitation by creating a new
type of “generalized lists.”

datatype ’a genlist =

glNil

| glAtom of ’a

| glList of ’a genlist list;

Then the list above can be represented as

glList [glAtom 1, glList [glAtom 2, glAtom 3]] : int genlist

Write a function flatten that takes out the extra structure and returns an
ordinary list of atoms. The result of applying flatten to the list above is
[1,2,3]. The result of applying flatten to a glAtom is a singleton list.

flatten : ’a genlist -> ’a list

10. What is the source of the names of the characters in the Liars Problem of
Assignment 9? Can you come up with better names?

11. Prove by induction that 20 + 21 + 22 + . . . + 2n = 2n+1 � 1 for 0 n.

12. Rewrite the lazy list data type from Assignment 9 so that the head, as
well as the tail, is evaluated lazily.

13. [Longest common sublists] The list slst is a sublist of the list lst if the
elements of slst occur, in order, in lst. For example, the list [1,1,2,3] is
a sublist of [1,1,1,2,2,3,4].

Given two lists, we can think about their common sublists. For example,

• [1] is a common sublist of [1,1,2] and [2,2,1],

• [2] is a common sublist of [1,1,2] and [2,2,1], and

• no list with more than one element is a common sublist of [1,1,2]

and [2,2,1].

Apparently, there may be more than one common sublist of maximum length.

Our problem is to write an SML function to find the length of a longest
common sublist. Give arguments justifying the assertions below, and then
use them to write the SML function.

Base cases: If one of the lists is empty, then any common sublist is also
empty.

Recursive steps Suppose that the lists are x::xs and y::ys. If x = y, then
a longest common sublist has the form x::lcs, where lcs is a longest
common sublist of xs and ys. If x 6= y, then a longest common sublist is
either a longest common sublist of x::xs and ys or a longest common
sublist of xs and y::ys.

Comment: The solution suggested here runs in O(2n) time, where n is the
sum of the lengths of the two lists. (Verify!) In an algorithms course, you
will learn about dynamic programming. Using that technique, one can find a
longest common substring—not just its length—in O(n2) time.

14. What is the largest two’s complement signed integer that can be expressed
with five bits? The smallest (i.e., most negative)? What are the largest and
smallest unsigned five-bit integers?

15. Express �47 as an eight-bit two’s complement binary integer.

16. Your invisible classmate, Witt O’Taclu, thinks that one can negate a two’s
complement signed integer by simply changing the sign bit.

a. Using the operators &, |, and ^ to represent, respectively, bitwise “and,”
“or,” and “xor,” write an expression that transforms a 32-bit signed integer k
as Witt suggests. You will, or course, have to use k. You may also use maxInt

and minInt, the largest and smallest (most negative) signed integers.

b. What is the value of the 32-bit signed integer k after Witt has “negated” it?

17. Suppose that a number k is represented as a 32-bit two’s complement
integer. Suppose that k is negated, and the resulting bits are viewed as an
unsigned number. In terms of k, what is the value of that number? (Hint
and/or caution: The original value of k may be negative, zero, or positive.)

18. When adding two bits, what logic gate (or, equivalently, operation from
propositional logic) represents the sum bit? Which one represents the carry
bit?

19. Write a power function that computes be using only O(lg e) multiplica-
tions. (The base-two logarithm of e, written lg e, is one less than the number
of bits in the binary representation of e.)

20. This problem is about finding a particular substring in a string of char-
acters. Work over the two-character alphabet containing 0 and 1. Draw the
diagram of a DFA that accepts the strings which contain the substring 01011.
(Caution: Clearly, your DFA will match one character at a time, but it may not
go all the way back to the start state when a match fails. Think about what
happens when your DFA processes the string 01010111.)

21. Consider the substring search problem: Given two strings s and t, deter-
mine whether s appears as a substring of t. The Python function string.

find(s,t) solves the problem; it returns the first index in t which begins a
substring equal to s or �1 if there is no such substring.

Here is a slightly di↵erent SML function that converts strings to lists of
characters and returns a boolean value.

fun substr s t =

let

fun isPrefix ul nil = null ul

| isPrefix nil _ = true

| isPrefix (u::us) (v::vs) =

u=v andalso isPrefix us vs;

fun isSubstr ul nil = null ul

| isSubstr ul (v::vs) =

isPrefix ul (v::vs) orelse isSubstr ul vs;

in

isSubstr (explode s) (explode t)

end;

a. Suppose that s and t have lengths m and n, respectively. In the worst case,
when s is not a substring of t, how many character comparisons are made by
substr?

b. Write a di↵erent SML function that gives the same results as substr but
does so in O(m + n) time. Assume a two-letter alphabet. (Hint: Construct a
DFA that looks for the substring s and run it on t. See Problem 20.)

22. Consider the ten-character alphabet consisting of the digits 0 through
9, and let the digit-sum of a string be the arithmetic sum of the characters.
The digit-sum of the empty string is zero. Draw the diagram of a DFA that
accepts all the strings whose digit sum is a multiple of 5.

23. Using the ten-digit alphabet, write a three-state NFA that accepts the set
of all strings that end with the digits 47.

24. Design a Turing machine that operates on the ten-digit input alphabet
of the previous problem. It begins with a single string on the input tape,
viewed as the decimal representation of a number N. It halts with the
decimal representation of 2N on the tape. (Make the following simplifying
assumptions: At the start, the head is scanning the rightmost character of the
input. When the machine halts, its head is scanning the leftmost character of
the input.)

25. Consider a Turing machine Cw which erases its input, writes w on the
tape, and halts while scanning the leftmost character of w.

a. Design the Turing machine C011.

b. Think about how you would design the Turing machine Cw for some other
word w. Imagine how you would design a Turing machine D (if you were
asked to do so on a final exam, for example) that takes a word w and produces
a description of Cw .

26. In class, we often used the function uniquify as an example. Write a
version of uniquify that runs on a list of length n in O(n2) time (worst case).
Verify the time bound. You may assume that the member function is available
and runs in time proportional to the length of the list.

27. Here are two implementations of Euclid’s algorithm for finding the great-
est common divisor of two positive integers. In terms of the number of bits
required to represent the original arguments a and b, what is the (worst case)
time complexity of each one?

fun gcdOne (a,b) = fun gcdTwo (a,b)

if a = 0 if a = 0

then b then b

else if b = 0 else gcdTwo(b, a mod b);

then a

else if a < b

then gcdOne(a,b-a)

else gcdOne(a-b,a);

28. What is the purpose of a stack frame? What values are normally stored in
one?

29. Write a short CS41B subprogram to copy the contents of a block of mem-
ory from one location to another. Follow the usual CS41B calling conventions.
Before the call to the subprogram, two arguments are pushed onto the stack,
in order:

• the address of the beginning of the source block and

• the address of the beginning of the destination block.

On entry to the subprogram, register r3 will contain a third parameter, the
size of the transfer or the number of bytes that are to be copied. Remember
that the CS41B word-size is two bytes. Assume that the source and destination
regions do not overlap. If this were a real final examination, you would
be given a list of CS41B instructions. (Actually, if this were a real final
examination, you would not be asked to write CS41B code. The problem is
here to give you practice with the aspects of the computational model on
which you will be tested.)

30. Most programming languages have a provision for floating point con-
stants, like 123.45 and �0.67e+2. Here is one possible syntactic specification
for floating point constants.

F ::= [S](G | H)
G ::= D+. D+

H ::= 0. D+e S D+

D ::= 0 | 1 | . . . | 9
S ::= + | �

Let A be the alphabet consisting of the ten digits, the plus and minus signs,
the decimal point, and the letter e.

a. Design an NFA over the alphabet A that accepts the words that are correct
floating point constants according to the above specification.

b. [Long and complicated] Design a DFA that accepts floating point constants.

