CS52 - Assignment 7

Due Friday 4/8 at 6:00pm

A CRYPTO NERD'S

IMAGINATION

HI5 LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLOSTER To CRACK \T

NO GooD! IT'S
b6 -BIT Rﬁm

E‘u”L F’LH.N

WHAT WOULD

ACTUALLY HAPPEN:
H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEUS U5 THE PASSWORD.

\ Gor 1T,
@, Q)

15 FOILED! ™

https://xkcd.com/538/

For this assignment we will be writing code that allows us to encrypt and decrypt strings using
RSA encryption. Put your solution in a file called assign7.sml and submit in the usual way.

Starter

To ensure that everyone has working code to get started, we have provided a special version of
SML that already contains a cs52int datatype and functions.

Running the special version of SML

The version we are providing only works on mac OS or Linux, so if you are working on a Windows
computer of your own, you will have to do this assignment in the lab.

e If you are working in the lab
To start SML, run the following command from Terminal:

/common/cs/cs052/bin/sml-cs052

e If you are working on your laptop/desktop and it’s a Mac or Linux computer

1. Create the assign7 directory where you will be doing all of your work.

2. Go to:
http://www.cs.pomona.edu/~dkauchak/classes/csb2/assignments/assign7/
and download the zip file into the assign7 directory.

3. Unzip the contents of the file. You should see three files now.

4. To run the special version of SML, make sure that you are in your assign7 directory
and then type:

./sml-cs052
5. To check that this is working correctly, just call one of the functions listed below.

Available functions

All of the functions, sum, diff, compare, toInt, fromString, etc., are available that you imple-
mented in assignment 3 as well as the constants zero, one, and two. You may use any of the
following functions on this assignment:

zZero negate is0dd compare fromInt gcd
one sum abs greater tolnt inversemod
two diff min greatereq fromString randomCs52Int
prod max less toString
quo sign lesseq
rem sameSign unequal
square

You may not, however, use any of the list-based functions, nor are you allowed to use the constructor
Cs52Int. (We would like to have hidden that constructor, but SML makes it difficult. There is
no need to use it because any values you need may be constructed from the integer- and string-
conversion functions.)

Note: instead of divide the function that divides two numbers is called quo.

Additional functions

If you look closely at the list above you’ll notice three additional functions that we didn’t have
before. I have included the code for these functions at the end of this assignment in an appendix.
The comments of these functions explain their usage. You will need to use all three of these functions
for this assignment so make sure that you understand what each of the three functions do.

Hints/Advice

I've put a number of suggestions throughout this assignment, so please do pay attention to those.
Two other general pieces of advice:

e As always, make sure to test as you go. None of the functions below are particularly compli-
cated, but many of the latter functions utilized the earlier ones, so it’s important that they
are correct.

e map will be your friend on this assignment. You should be doing very little list recursion.

Implementing RSA

1. [2 point] Warmup

I know it’s been a while since we’ve programmed in SML. As a warmup (and to create a useful
function for later on) write a function powermod that computes b mod m. Use the method
for exponentiation from Problem 5b on Assignment 6, and be sure to take the remainder after
every arithmetic operation.

powermod : csb2Int -> csb2Int -> csb2Int -> csb52Int

The order of the arguments is b, e, and then m. You may assume that b and m are positive,
and e is non-negative. You will use powermod at least twice later in the assignment.

2. [2 points] Handling arbitrary length messages

As we discussed in class, RSA only works for numbers less than n. To be able to translate
arbitrarily long messages we need to be able to break a number that is larger than n into a
collection of number that are all smaller than n (and then the reverse operation), all in a way
that is efficient in space usage.

Write a pair functions to convert between integers and their base-n list representations. The
functions block n and unblock n should be inverses of one another.

block : csb2Int -> cs52Int -> csb2Int list
unblock : c¢s52Int -> c¢sb2Int list -> csb52Int

The expression block n m creates a list [x0,x1,...,xk] each of whose entries is a non-
negative integer less than n and which satisfies

msz—l—Xl-n+x2-n2+...—|—xk~nk.
Effectively, the result of block n m is the base-n representation of the integer m. The expres-
sion unblock n [x0,x1,...,xk] recovers the value of m from the list. We have done this
many, many times now, so this should feel very familiar.

3. [2 points] From strings to numbers

RSA encrypts numbers. To encrypt a string, we need to be able to convert from any string
into some corresponding number. One way to do this is to treat each character in a string
as a digit. We’ve already seen this with hexadecimal numbers, but that only used the letters
0-9 and a-f.

We will be using the ascii representation of characters, which has 256 possible characters
represented by integers between 0 and 255.1 The function ord takes as input a character and
returns the number corresponding to that character. Its inverse is the function chr.

To convert a string to a number we just think of a string as a number represented in base 256.
For this assignment, we will assume that strings are encoded so that the first character cor-
responds to the low-order part of the integer.

Declare a pair of functions that translate between a string and the corresponding cs52Int.

stringToCs52Int : string -> c¢s52Int
cs52IntToString : csb2Int -> string

These functions allow us to translate between a string and its numerical representation.

val abcInt = stringToCs52Int "abc';
toString abclnt;
val it = "6513249" : string

csb2IntToString (abclnt);
val it = "abc" : string

The value 6513249 is (ord #"a") + (ord #"b")256 + (ord #"c")2562.
Suggestion: The functions block and unblock that you wrote above and the built-in functions
explode and implode may be useful.

4. [1 point] Almost there

Write a function rsaEncode that takes a key (e,n) and an integer less than n and returns
the encryption of the integer. The result will also be an integer less than n.

rsaEncode : c¢csb2Int * c¢sb2Int -> c¢sb2Int -> c¢csb2Int

The result of rsaEncode (e,n) m is m®* mod n. Do not forget that you wrote powermod in
Problem 1.

We'll be generating keys in a minute, but if you’d like to use a “valid” key for debugging, you
can use (7,111).
5. [2 points] Encryption at last

We now have all of the pieces to support encryption and decryption, given a set of keys.
Remember, to encrypt a string:

- We turn the string into a number,
- then break this number into n sized chunks.

- and finally we encrypt each of these chunks using the public key.

Type man ascii in a terminal window to see the correspondence between integers and characters.

In addition, to make life simple for passing it around, for this assignment we will also then
package each of these encrypted chunks back into a single number. Decryption is just these
steps in reverse using the private key.

The two functions below should do this and should be a straightforward application of the
previous functions we have written so far for this assignment.

(a) Write a function encryptString that takes a key (e,n) and a string, and produces a
single cs52int value that encrypts the message contained in the string.

encryptString : csb2int * c¢sb2int -> string -> csb2int

Remember that rsaEncode can only encrypt numbers that are less than n.
(b) Write an analogous function decryptString that takes a private key (d,n) and a single
cs52int representing an encrypted string and decrypts the string.

decryptString : csb2int * csb2int -> csb2int -> string

Remember that decrypting a number is the same process as encrypting a number, except
using (d,n) instead of (e,n), that is computing m® mod n.

. [1 point] Does it work?

Test to make sure that it works. Given the public key (7,111) and the private key (31,111)
write a few lines of code (i.e. not any functions) that encrypt and then decrypt the following
string:

Don’t panic and always carry your towel.

. [3 points] That’s so random

The last thing we now need is a way for generating RSA keys. A critical part of this processing
is finding a pair of different k-bit primes. Review the material on industrial strength primes
from the reading: Some Facts from Number Theory and from the class notes. For our case, a
number p is prime if a? mod p = a for twenty random a’s that are less than p. Any p where
this is not true is not prime.

Write a function that takes an integer k and produces a k-bit industrial strength prime.
industrialStrengthPrime : int -> csb52Int

Note that k-bit means that the number uses at most k bits.

See the appendix for how to generate random k-bit cs52Int’s. Important: There must be
only one random number generator that generates all the random values. It must be declared
outside of the function.

. [2 points] The key to success is ...

Using the result of Problem 7, create a function that takes an integer k and produces a pair
of RSA keys based on two k-bit primes.

newRSAKeys : int -> (csb2Int * cs52Int) * (cs52Int * cs52Int)

(Note that it doesn’t actually matter which you consider public/private.)

Given two numbers u and m the inversemod function (see appendix) attempts to find a v
such that 0 < v < m such that uv mod m = 1. If it finds one, i.e. returns SOME v, then you
know that ged(u, m) = 1 and if it doesn’t find one, i.e. returns NONE, then ged(u, m) # 1.

We can use this fact to help us generate a pair of keys (e,n) and (d,n). To find a d and e
such that de mod p(n) = 1 repeat the following until a valid pair d and e are found:

e Generate a random d, where 0 < d < n.

e Use inversmod to try and find an e.

. [1 point] Just for fun :)

Use the function from Problem 8 to generate keys from a pair of 30-bit prime numbers. Choose
a secret message, one or two sentences in good taste, and encrypt it with your public key (as if
someone were sending the message to you). Copy your public key and the encrypted message
into a file named assign7.rsa. The file should contain two val declarations, as shown in the
following example.

val myPublicKey = ("7","111");
val mySecret = "9173051715601092017894228138287" ;

Important: The three integers should be represented by strings of digits, which can be created
with the function toString. Your strings will be much longer than the ones in the example;
each one must appear on a single line and cannot be broken across lines. See the file
/common/cs/cs052/rsa/example.rsa for another example.

The file assign7.rsa is the only material that you should submit for Problem 9. No material
will go into your assign7.sml file for this problem. Keep a record of your private key and
your secret message, but do not reveal them to anyone. After everyone has completed the
assignment, we will post the submissions for Problem 9 and attempt to break one anothers’
codes.

Programming detail: For this problem it will be necessary to see a long string in its entirety,
without truncation. The best way to do this is to tell SML to display more data when it
echoes the values. Do do this, you will have to set a parameter using the statement

Control.Print.stringDepth := 2000;

in SML. The stringDepth value is the maximum number of elements in a string that will be
written; the default value is 70.

In some cases, this will not work. If it doesn’t, the other option is to explicitly print the
value, which does display it in its entirety. The print function will print out the value of a
variable. For example, if you have your encrypted message in a variable called “mySecret”,
you can print out the entire string as:

print mySecret;
Do note that “val it = () : unit”, the return value, is also at the end of the string, so be
careful not to copy this part as well.
10. [3 points]| Cracking the code

If someone knows my public key (e,n) and knows p and ¢, it is easy to recreate the steps
in generating the key and learn my private key. The security of the RSA scheme lies in the
presumption that factoring n into p and ¢ is a time-consuming process.

(a) [1.5 points] Write a function called bruteForceCracker that takes as input a public
RSA key and returns the corresponding private key.

bruteForceCracker : csb2int * csb2int -> csb2int * csb52int

You may assume that the input is a valid key.

(b) [0.5 points| If my RSA public key is (22821, 52753), what is my private key? Place
your answer in a comment in the file.

(c¢) [1 point] The numbers in the key of part b can be represented with 16 bits. Let = be
the time it takes to crack a 16-bit code. Estimate the time it would take to find the
private key if the public key numbers required 160 bits to represent. Your answer should
be in terms of x. Give a brief explanation. Again, place your answer in a comment in
the file.

When you’re done
Double check the following things:

e Make sure your code runs without any errors (i.e. use "assign7.sml" does not execute an
error). If you didn’t finish a function and it gives an error, just comment it out and leave a
note.

e Make sure that your functions match the specifications exactly, i.e. the names should be
exactly as written (including casing) and make sure your function takes the appropriate
number of parameters and is curried /uncurried appropriately.

e Make sure you have used proper style and formatting. See the course readings for more
information on this. Be informative and consistent with your formatting!

e Make sure you’ve properly commented your code. You should include:

— A comment header at the top of the file with your name, the date, the assignment
number, etc.

— Each problem should be delimited by comment stating the problem number.

— Each function should have a comment above it explaining what the function does.

— Complicating or unusual lines in functions should also be commented.

Don’t go overboard with commenting, but do be conscientious about it.

When you’re ready to submit, upload your assignment via the online submission mechanism. You
may submit as many times as you’d like up until the deadline. We will only grade the most recent
submission.

Don’t forget that you are submitting two files: assign7.sml and assign7.rsa.

Grading
functions 19
comments/style | 3
| Total | 22 |

Appendix: Additional cs52int Functions

The following three functions have been added to the ones specified in Assignment 3.

(*
* gcd : csb2int -> csb2int -> csb2int
*
* gcd x y returns the greatest common divisor of x and y. It uses
* Euclid’s algorithm.
*)
local
fun euclid x y =
if x = zero
then if y = zero
then raise Overflow
else y
else if y = zero
then x
else euclid (rem y x) x;

in
fun gcd x y = euclid (abs x) (abs y);
end;
(*
* inversemod : csb2int -> csb52int -> c¢sb52int option
*
* inversemod u m returns (SOME v) when O < v < |m| and uv = 1
* (mod m). The value of v, if it exists, is unique. inversemod u m
* returns NONE if there is no such v.
*
%)
fun inversemod u m =
let
(*
* Invariant: There are constants b and d
* satisfying
* x = autbm and y = cu+dm.
* If ever x=1, then 1 = au+bm, and a
* is the inverse of u, mod m.

*)
fun extendedEuclid x y a ¢ =
if x = zero
then NONE
else if x = one
then SOME (if less a zero
then sum a m

else a)
else extendedEuclid (rem y x)
X

(diff ¢ (prod (quo y x) a))

a;
in
extendedEuclid u m one zero
end;

~
*

randomCs52Int : int -> Random.rand -> csb2Int

Usage example: To generate two 100-bit random cs52Int’s, one
can execute the following declarations. It is important to use
only *onex* generator for all the random values. Notice that
random number generation violates the functional paradigm, in
that different calls to the same expression yield different
values.

val seed = (47,42);

val generator = Random.rand seed;

val randomFirst = randomCs52Int 100 generator;
val randomSecond = randomCs52Int 100 generator;

¥ X X X X X X X X X ¥ ¥ * x

*)
fun randomCs52Int len rg =
if len <= 0
then zero
else if 8 <= len
then sum (fromInt (Random.randRange (0,255) rg))
(prod (fromInt 256) (randomCs52Int (len-8) rg))
else sum (fromInt (Random.randRange (0,1) rg))
(prod two (randomCs52Int (len-1) rg));

10

