
CS52 - Assignment 6

Due Monday 3/28 at 11:59pm

https://xkcd.com/982/

Your work for this assignment is to be submitted on paper.1 Please write legibly. I strongly
encourage you to figure out your proves on a piece of scratch paper first and then write them a
second time, neatly, for your final submission.

To turn it in, you may give it directly Dr. Dave or slide it under his office door.

1For those of you who would like to use LATEX, I have included a source file if you’d like to utilize it, though you
do not have to.

1



Some “Facts”

You may use the following definitions and facts in your proofs below. Please refer to them by
number to justify your proofs, e.g. “by Fact 1”.

1. []@vl = vl

2. ul@[] = ul

3. (ul@vl)@wl = ul@(vl@wl)

4. [u]@us = u::us

5. nrev [] = []

nrev (u::us) = (nrev us) @ [u]

6. revApp ul [] = ul

revApp ul (v::vs) = revApp (v::ul) vs

The Proof is in the Pudding

1. [2 points] Multiples of fun

(a) [1 point] Suppose that we evaluate the degree k polynomial p0+p1X+p2X
2+. . .+pkX

k

using a “brute-force” approach by taking every possible opportunity to multiply. For
example, for k = 3, we would compute

p0 + p1 ·X + p2 ·X ·X + p3 ·X ·X ·X,

so that there would be a total of 6 multiplications.

In terms of k, how many multiplications would be required to evaluate a k-degree poly-
nomial using the brute-force method? Give an informal justification; a proof is not
necessary.

(b) [1 point] We saw Horner’s method on assignment 2. It is a recursive technique for
evaluating polynomials. As above, no multiplications are required for a zero-degree
polynomial. For a k-degree polynomial with k > 0, we write

p0 + X ·
(
p1 + p2X + . . . + pkX

k−1︸ ︷︷ ︸
(k − 1)-degree polynomial

)
.

How many multiplications are required when using Horner’s method to evaluate a k-
degree polynomial? Again, just give an informal justification.

2. [4 points] Prove, by list induction on vl, that revApp ul vl = (nrev vl) @ ul.

Notice the special case of this result, that revApp [] vl = nrev vl, proves that our two
implementations of rev really do compute the same results.

2



3. [4 points] Induction into the hall of fun

(a) [1.5 points] We want to count the number of times the operator :: is used when nrev

reverses a list of length k.

Write a recursive relation called nCons (like count0(k) and count1(k) that we did in class
for uniquify variants) for this number as a function of k.

Clarification: You are to count the number of times that :: is used to construct a list,
and not the times that the operator appears in the pattern-matching on the left of the
equals signs in the definition. You may use without proof the fact that the number of
:: operations used in computing ul@vl is exactly the length of ul. Do not forget that
[u] is an abbreviation for u::[].

(b) [2.5 points] Prove that nCons(k) = (k + 1)k/2.

4. [4 points] Induction cookware should not be used for proofs

(a) [1.5 points] Write a recurrence relation called raCons for the number of :: operations
used in computing revApp ul vl with respect to k, the length of vl.

(b) [2.5 points] Prove that raCons(k) = k.

5. [4 points] Binary induction

Suppose that b is a positive integer, and e, when written out in binary, is a k-bit number.

(a) [1.5 points] What is the maximum number of multiplications required to compute be

when be is computed by the formula below? Express the result in terms of k, not e.
Give an informal justification; a proof is not necessary.

be =

{
1 if e = 0, and
b · be−1 otherwise.

(b) [1.5 points] Again in terms of k, what is the maximum number of multiplications
required to compute be when be is computed using the alternative formula below? Give
an informal justification; a proof is not necessary. (We will use this formula when we
return to cs52Int in a future assignment.)

be =


1 if e = 0,

square(be/2) if 1 < e and e is even, and

b · square(be/2) otherwise.

Here, e/2 is integer division, with truncation. In binary, it amounts to removing the
least significant bit, so that e/2 is exactly one bit shorter than e. The square function
requires one multiplication.

(c) [1 point] Assume that e is a 100-bit number and that a computer can do 1011 multipli-
cations a second. (That is fast, but not unreasonable, for the current crop of computers.)
For each of the two techniques from part a and part b, estimate how long it would take
to compute be?

It will be helpful to use the approximation 210 ≈ 103 (remember the party trick?). Also,
one year is about 3 · 107 seconds.

3



6. [4 points] Consider the following SML definition of binary trees and an associated “reflection”
function.

datatype ’a binTree =

Empty

| Node of ’a binTree * ’a * ’a binTree;

fun mirror Empty = Empty

| mirror (Node (lt, g, rt)) =

Node (mirror rt, g, mirror lt);

Prove by induction on the datatype binTree that

mirror (mirror onTheWall) = onTheWall.

When you’re done

• Make sure your name and assignment number are at the top of the paper.

• Make sure that each problem is clearly denoted.

• Make sure that your handwriting, etc. is very clear. If a particular problem is very messy
please rewrite it on a separate sheet of paper more clearly.

• For each induction proof make sure you have followed exactly the induction format discussed
in class.

• Make sure that you justify every step in your proofs.

To turn it in, you may give it directly Dr. Dave or slide it under his office door.

4


