
CS52 - Assignment 2

Due Friday 2/5 at 5:00pm

https://xkcd.com/759/

An important part of SML programming is recursion and particularly list recursion. For this
assignment we’ll be playing with these ideas even more!

Reading

Hopefully you have found one or more books that work for you. In your favorite SML book(s),
finish reading the sections on lists and list recursion.

The Fun!

1. [1 point] Another path to success...

In Assignment 1, you wrote functions square and squareAll. Use your square function and
the built-in function map to write another version of squareAll that squares all the integers
in a list. Your function should not be recursive.

2. [2 points] Recursion over two lists

There is an SML function ListPair.zip that takes a pair of lists of the same lengths and
forms a list of element-wise pairs. For example,

ListPair.zip ([1,2,3],[4,5,6]) yields [(1,4),(2,5),(3,6)].

When the two lists are of different lengths, the trailing elements of the longer list are ignored.

Use list recursion to implement directly a curried function myZip that has the same behavior.

1

myZip : ’a list -> ’b list -> (’a * ’b) list

Do not useListPair.zip in your function.

Hint: This problem is about the structure of list recursion. Think carefully about what
constitutes a base case and how the recursive step reduces one case to a simpler one.

A fun excursion, but not part of the assignment: Search the web to find the documentation
for ListPair.zip (We’ll see more of these types of built-in functions as we progress through
the course.)

3. [2 points]

Write a function split that takes a list and produces a tuple containing two lists. The first
element of the tuple contains, in order, the first, third, etc. elements of the argument list, and
the second element contains the elements at even positions.

split : ’a list -> ’a list * ’a list

For example:

split [1,2,3,4,5] yields ([1,3,5],[2,4]).

Hint : The usual list-recursive paradigm has two cases: an empty list and a non-empty one.
Instead, use a structure with two base cases: an empty list and a list with only one element—so
that the recursive step is done on a list with at least two elements.

4. [2 points] Can you really do that?

Write a function cartesian that takes two lists and forms a list of all the ordered pairs, with
one element from the first list and one from the second.

cartesian : ’a list -> ’b list -> (’a * ’b) list

For example:

cartesian [1,3,5] [2,4] will return [(1,2),(1,4),(3,2),(3,4),(5,2),(5,4)].

Hint : You will need to recurse over both lists, but do it separately. Make your function
recursive in the first list. Pass the second list to an auxiliary function that takes an element
and a list and returns a list of pairs formed from the element and the members of the second
list. Remember to use let blocks appropriately here if applicable.

5. [2 points] Don’t overthink it!

Read about the SML keyword op in your favorite reference. Using the cartesian function
from Problem 4, write a curried function addAllNew that takes two lists of integers and adds
each number in the first list to each number in the second. There may be duplicates in the
result list.

addAllNew : int list -> int list -> int list

2

For example:

addAllNew [2,4] [3,5,7] yields [5,7,9,7,9,11].

6. [4 points] Change is a good thing

This is the infamous Change Problem. Given a list of coin denominations and an amount of
money, we want to list all the ways to make change in that amount using the specified coins.
For example, there are two ways to make seven cents from nickels and pennies:

[[1,1,1,1,1,1,1], [5,1,1]]

Write an SML function change that takes a list of denominations and an amount and produces
a list of all the ways to make change in that amount. You may assume that the amount is not
negative and that the coin denominations are all positive.

change : int list -> int -> int list list

This exercise is intended to be an example of a nonstandard use of list recursion. Be guided
by the following:

• Think about the base cases. What is the result when the amount is 0? What is the result
when the list of coins is empty?

• Here is a strategy to reduce a general case to simpler ones: Let a be the amount and d
be the first denomination on the list. There are two possibilities: either you do not use d
at all and you have to make change from the other denominations, or else you use d at
least once and you have to finish the job by making change in the amount of a− d, using
the entire list including d.

• The order of coins in a single possibility is not relevant. “Two pennies and a nickel” is
the same as “a nickel and two pennies.” If you follow the previous suggestion, you will
automatically avoid duplicate possibilities. When you are finished, observe that the coins
appear in a possibility in the same order—perhaps with repetitions or omissions—as in
the original list of coins.

• The possibilities themselves may appear in any order, depending on how you implement
the strategy above.

• Use the type information as a guide to constructing the final result. Remember that
change returns a list of lists.

7. [3 points] Nums to lists and back again

We can think of a natural number as being represented by a list of digits, with the least
significant digit at the front of the list. For example, 47 is represented by [7,4]. Notice that
the representation is not unique; 47 is represented by [7,4] and also [7,4,0,0]. (An aside,
what is the shortest representation for zero?)

Write functions to convert back and forth between non-negative integers and lists of digits.
Declare the exceptions NegativeNumber and BadDigit. Raise the first if toDigitList en-
counters a negative argument. Raise the second if the function fromDigitList finds a number
that is not in the range from 0 to 9.

3

toDigitList : int -> int list

fromDigitList : int list -> int

Hint: Horner’s rule is a method for efficiently calculating polynomials. One corollary of
Horner’s rule is that you can view a multi-digit number d1d2...dn (e.g. 342 has d1 = 3, d2 = 4
and d3 = 2) as:

d1d2...dn = dn + 10 ∗ (dn−1 + 10 ∗ (dn−2 + ...10 ∗ d1))

e.g.
342 = 2 + 10 ∗ (4 + 3 ∗ 10)

8. [2 points] Elementary school math

Write a curried function addDigitList that adds two numbers represented by the digit list in
Problem 7. Use the algorithm that you learned in elementary school which does it a digit at a
time starting with the lowest order digit and passing along carries to the higher order digits.

addDigitList : int list -> int list -> int list

Comments:

(a) The strategy “Convert to int, use the arithmetic operations built into SML, and convert
back to a list” is not something you learned in elementary school.

(b) Think about handling the problem a digit at a time, starting with the lower order digits.

(c) You will need an auxiliary function to help you out. Notice that if you do it by hand,
very quickly you end up in a situation where you are adding three numbers, the two
digits plus the carry bit from the previous digit. Your auxiliary function can help mimic
this situation.

9. [2 points] It seemed easier in elementary school

Write a curried function multDigitList that will multiply two numbers represented by the
digit list in Problem 7. Again, use the algorithm that you learned in elementary school.

multDigitList : int list -> int list -> int list

Comments:

(a) Again, you may not convert the numbers to int and then multiply.

(b) Work through a few problems by hand. This will both serve as a way to try and identify
the recursion as well as for debugging examples.

(c) When doing it by hand, you should notice that a subproblem of multiplication involves
multiplying a number by a single digit. You should tackle this as a separate helper
function.

(d) Your previous functions over int lists will be useful!

4

(e) Soon we will talk about division. Think about how long division can be described as a
recursive process. (They did not tell you about that in elementary school!)

Just for fun!

This problem is not part of the current assignment. It will be on Assignment 3, but it does
not hurt to be thinking about it sooner.

You’ve done addition and multiplication, let’s think about division. Sit down (not at a
computer!) and do a few long division examples by hand. Think about repetition as you do it,
i.e. where are there steps that are being done repeatedly.

Once you’ve thought about it, write a function that will carry out division on numbers
represented as in Problem 7. Your function should be named divDigitList, be curried, and
divide the second argument by the first. Because you are doing integer division, you will have
a quotient and a remainder. The result will be an ordered pair, quotient first and remainder
second. For example, the call divDigitList [3] [3,1] returns ([4],[1]).

divDigitList : int list -> int list -> int list * int list

When you’re done

Double check the following things:

• Make sure that your functions match the specifications exactly, i.e. the names should be
exactly as written (including casing) and make sure your function takes the appropriate
number of parameters and is curried/uncurried appropriately.

• Make sure you have used proper style and formatting. See the course readings for more
information on this. Be informative and consistent with your formatting!

• Make sure you’ve properly commented your code. You should include:

– A comment header at the top of the file with your name, the date, the assignment number,
etc.

– Each problem should be delimited by comment stating the problem number.

– Each function should have a comment above it explaining what the function does.

– Complicating or unusual lines in functions should also be commented.

Don’t go overboard with commenting, but do be conscientious about it.

When you’re ready to submit, upload your assignment via the online submission mechanism. You
may submit as many times as you’d like up until the deadline. We will only grade the most recent
submission.

5

Grading

functions 20

comments/style 2.5

Total 22.5

6

