
CS52 - Assignment 1

Due Friday 1/29 at 5:00pm

https://xkcd.com/221/

For this assignment, you will start writing your first SML functions. Put all of your work in a file
called assign1.sml, which should be placed in your cs052 directory. In addition to your normal
commenting, make sure to delimit problems by putting in a comment that has the problem number.

Reading

Make sure you’re keeping up with the readings posted on the course web page.

Additionally, here are some relevant readings from some of the optional books:

• Ullman, Chapter 2, Sections 3.1 through 3.3, Section 5.1, and Sections 5.3 through 5.6;

• Gilmore, “Simple Applicative Programming”;

• Hansen and Rischel, Chapters 2 and 5;

• Harper, parts of Chapters 2 through 9;

• Paulson, Chapter 1, Sections 2.1 through 2.6, Sections 2.14 through 2.16, and Sections 3.1
through 3.5; and

• Pucella, Chapter 2.

I don’t expect you to read all of these things, but you should be trying to find a book that you like
and get additional support/examples from there.

1



The Fun!

1. [1 point] Warming up

Write a function square that computes the square of an integer.

square : int -> int

2. [1.5] A little warmer

(a) Write a function factorial to compute the factorial function.

factorial : int -> int

Your function must give the correct answer for all non-negative numbers and so something
reasonable for negative numbers.

(b) Experiment to find the largest n for which your function computes n!. Include in
comments below the factorial function what that number is. (Do not include the
experimental code in your file; simply the answer in a comment.)

(c) reals have a much larger range of values than ints. One way to get the factorial function
to calculate larger values is to still have it take in an int but then do all the calculations
as a real and return a real. Write another function called realFactorial that returns
a real result. You will need the built-in function real which converts an int into a
real.

realFactorial : int -> real

Note: you should NOT simply have real factorial x as the body.

(d) Repeat part b for the realFactorial.

3. [1 point] Takeuchi

The Takeuchi function was developed in the 1970’s as a benchmark for Lisp systems (another
functional language). It makes a large number of recursive calls without generating large
integers. Write a function tak to compute the Takeuchi function.

tak(x, y, z) =


y if x ≤ y
tak(tak(x− 1, y, z),

tak(y − 1, z, x),
tak(z − 1, x, y)) otherwise.

tak : int * int * int -> int

4. [1 point] How long is that list?

There is a built-in function length that returns the number of elements in a list. Pretend
that length does not exist and write an equivalent function myLength that uses list recursion.

myLength : ’a list -> int

2



5. [1 point] How long is that string?

There is a built-in function size that returns the number of characters in a string. Pretend
that size does not exist and write an equivalent function mySize. (Hint: This is a one-liner.
There is a built-in function explode that converts a string to a list of characters.)

mySize : string -> int

6. [1.5 points] Let’s put that function to use

Write a function squareAll that takes a list of integers and returns the list of the squares of
the respective integers. Use list recursion and your function square from Problem 1.

squareAll : int list -> int list

7. [1.5 points] List recursion is your friend

Write a function sumList that computes the sum of the numbers in a list of integers. (The
sum of the numbers in the empty list is zero.)

sumList : int list -> int

8. [1 points] Code reuse

Use your functions from previous problems to write a function sumSquares that computes the
sum of squares of the integers in a given list. (This is another one-liner. You may not use
recursion!)

sumSquares : int list -> int

9. [1 points] Simple counting

Write a curried function count that takes as in put a list and a value and counts the number
of times that item occurs in the list

count: ’’a list -> ’’a -> int

For example,

- count [0, 1, 0, 1, 0, 0] 0;

val it = 4 : int

- count (explode "banana") #"a";

val it = 3 : int

Note: Depending on how you write this, you will likely get the warning Warning: calling

polyEqual. This is one of the few warning you can ignore in this class.

3



10. [1.5 points] Less simple counting

The number of ways to pick m objects out of a set of n objects is given by the formula(
n

m

)
=

n!

m! (n−m)!
.

(Do not be confused by the symbol
(n
m

)
; it is the common mathematical notation for a particular

function of m and n. It is sometimes written Cn(m).)

Write a function comb0 to compute this expression directly, using your function factorial

from Problem 2. Make m the first (leftmost) variable.

comb0 : int -> int -> int

11. [2 points] Bigger and better!

The factorial function, and hence your function in the previous problem, is severely limited in
the values it can handle (as you saw before!). An alternate way of calculating the function
above that does not use factorials at all utilizes the following recursive identity:(

n

m

)
=

(
n− 1

m− 1

)
+

(
n− 1

m

)
.

Use this identity to write a recursive function called comb1.

comb1 : int -> int -> int

You should not use any variants of your factorial function here (or comb0 ). Just implement
the function recursively. The key challenge is to discover all of the base cases.

Here is a justification of the identity: If I am choosing m items from n, I either take the first
item of the n and then I have m− 1 choices out of the remaining items, or else I skip the first
item and I have m choices out of the remaining items.)

An aside... Take a step back (good work so far!) and look back at the functions you’ve
written so far. Identify the various strategies that you used to create functions:

• Combining existing functions. No recursion is involved.

• Using recursion on the natural numbers. The result is usually another integer.

• Using list recursion. The result may be another list or a value that is not a list.

A large part of our work in the early part of this course will be in extending and combining
these basic ideas. The next problems provide an example of how to combine the two kinds of
recursion.

12. [3 points] Getting more interesting

(a) Write a function consAll0 that prepends 0 to each element in a list of lists of integers.
For example,

consAll0 [[1],[2,3]] yields [[0,1],[0,2,3]].

4



consAll0 : int list list -> int list list

(b) It does not really matter that we are prepending an integer. Write a more general
(curried) function consAllk that takes a value k and a list of lists, and prepends k to
each element in the list.

consAllk : ’a -> ’a list list -> ’a list list

13. [3 points] A bit more of a challenge

Using your solution to Problem 11 for inspiration and your function consAllk as an aid,
write a function combList that will take an integer k and a list xl and return a list of all the
k-element sublists of xl. For example,

combList 2 [1,2,3] yields [[1,2], [1,3], [2,3]],
combList 5 [1,2,3] yields [], and
combList 0 [1,2,3] yields [[]].

Notice from the signature that combList returns a list of lists.

combList : int -> ’a list -> ’a list list

Hint: the length of this list should be the same as the number returned by your comb functions.

When you’re done

Double check the following things:

• Make sure your code compiles, i.e. “use assignX.sml” should not give an exception.

• Make sure that your functions match the specifications exactly, i.e. the names should be
exactly as written (including casing) and make sure your function takes the appropriate
number of parameters and is curried/uncurried appropriately. For example, the function in
Problem 3 is uncurried, so it would be called as
tak(3, 6, 7);

while the curried function in Problem 10 would be called without parentheses as
comb0 4 7;

Curried functions may seem a little weird at first, but they end up being easy and useful to
use!

• Make sure you have used proper style and formatting. See the course readings for more
information on this, but here are a few things to watch out for:

– Be informative and consistent with your formatting!

– No line should be longer than 80 characters.

– You should use spaces (NOT tabs) in your submissions. If you’re working on your own
laptop, make sure the text editor you’re using uses spaces instead of tabs.

5



• Make sure you’ve properly commented your code. You should include:

– A comment header at the top of the file with your name, the date, the assignment number,
etc.

– Each problem should be delimited by comment stating the problem number.

– Each function should have a comment above it explaining what the function does.

– Complicating or unusual lines in functions should also be commented.

Don’t go overboard with commenting, but do be conscientious about it.

When you’re ready to submit, upload your assignment via the online submission mechanism. You
may submit as many times as you’d like up until the deadline. We will only grade the most recent
submission.

Grading

functions 20

comments/style 2

Total 21.5

6


