
3/26/15	

1	

SEARCH
David Kauchak
CS30 – Spring 2015

Admin

Assignment 7 due tomorrow

Assignment 8 out soon

Talk today

 4:15 in Rose Hills Theatre

A few last things about classes

Look at rectangle3.py code

¤ Taking objects of the same type as parameters (e.g.
equals)

¤ Calling methods inside the class

¤  Instance variables do NOT have to be the same thing
as the parameters for the constructor

Assignment 7 comments

Think about how you want to use the objects (i.e. your program)
and let that motivate the class design, i.e. the methods, etc.

Class names should be capitalized
¤  CamelCase class names that are multiple words

n  class PomonaStudent

n  class WalkieTalkie
n  class StarWarsCreature

“pass”

3/26/15	

2	

Assignment 7 comments

If your program requires a file to work (i.e. to read data
from):

¤  create a folder: first-last-assign7
¤  put both the .py file and the .txt file in there
¤  zip of the folder and submit that

Be careful about filenames!
¤  files have extensions (that are sometimes hidden by the OS). On

mac, you can do CMD+i to get information about the file,
including the full filename

¤  We’re only reading .txt file (other files have formatting
information!)
n  Wing saves files just as text files automatically (though you’ll need to

make sure to include the .txt extension)
n  TextEdit: Format -> Make Plain Text
n  Windows: Use notepad (or in Word, “Save as…” and select .txt

Other ways of reading from a file

reader = open(“myfile.txt”, “r”)

Read the whole file:

next_line = reader.readline()	

Read one line of the file:

for line in reader:	

	
# do something with each line of the file	

Do dictionary example!

Think like a human

Cognitive Modeling

Think rationally

Logic-based Systems

Act like a human

Turing Test

Act rationally
Rational Agents

What is AI?

Rest of the semester

Think like a human

Cognitive Modeling

Think rationally

Logic-based Systems

Act like a human

Turing Test

Act rationally
Rational Agents

What is AI?

Next couple of weeks

3/26/15	

3	

Solve the maze! Solve the maze!

Solve the maze! Solve the maze!

How did you figure it out?

3/26/15	

4	

One approach

What now?

One approach

Three choices

One approach

What now?

Pick one!

One approach

Still three options!
Which would you explore/pick?

3/26/15	

5	

One approach

Most people go down a single path until
they realize that it’s wrong

One approach

Keep exploring

One approach

Keep exploring

One approach

What now?

3/26/15	

6	

One approach

Are we stuck?
No. Red positions are just possible options we haven’t explored

One approach

How do we know
not to go left?

One approach

Have to be careful and keep track of
where we’ve been if we can loop

One approach

Now what?

3/26/15	

7	

One approach

Now what?

One approach

Now what?

One approach Search problems

What information do we need to
know to figure out a solution?

3/26/15	

8	

Search problems

Where to start

Where to finish (goal)

What the “world” (in this case a maze) looks like

¤ We’ll define the world as a collection of discrete states
¤ States are connected if we can get from one state to

another by taking a particular action
¤ This is called the “state space”

State space example

State space example

… … …

State space example

For a given problem, still could have different state-spaces

How many more states are there?

3/26/15	

9	

State space example Solving the maze

Solving the maze Solving the maze

How what?

3/26/15	

10	

Solving the maze Solving the maze

How what?

Solving the maze

How what?

Solving the maze

Could we have found it
any other way?

3/26/15	

11	

Search algorithm

Keep track of a list of states that we could visit, we’ll
call it “to_visit”

General idea:

¤  take a state off the to_visit list
¤  if it’s the goal state

n we’re done!
¤  if it’s not the goal state

n Add all of the successive states to the to_visit list
n  repeat

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

How do we start?

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

Add start not to to_visit

1

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

Add start not to to_visit

3/26/15	

12	

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

Is it a goal state?

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

2
3
4

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

2
3
4 Which one?

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

3
4

Is it a goal state?

3/26/15	

13	

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

3
4

Where should we add
them in the list?

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

5
3
4 Let’s add them to the front

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

3
4

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

3
4

What do we do here?

3/26/15	

14	

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

3
4 list keeps track of where

to go next (and the states
we know about but haven’t
explored

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

4

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

6
7
4

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

7
4

3/26/15	

15	

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

4

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

5
3
4

What type of structure/list
is the to_visit list?

It’s a stack!!! (LIFO)

to_visit

1

2 3

4

5 6 7

8

9

10 11

12 13

14 15

- take a state off the to_visit list
- if it’s the goal state

we’re done!
- if it’s not the goal state

Add all of the successive states to the
to_visit list
repeat

What would happen
if it was a queue?

1

Search algorithm

add the start state to to_visit

Repeat

¤  take a state off the to_visit list
¤  if it’s the goal state

n we’re done!

¤  if it’s not the goal state
n Add all of the successive states to the to_visit list

3/26/15	

16	

Search algorithms

add the start state to to_visit

Repeat

¤  take a state off the to_visit list
¤  if it’s the goal state

n  we’re done!

¤  if it’s not the goal state
n  Add all of the successive states to the to_visit list

Depth first search (DFS): to_visit is a stack
Breadth first search (BFS): to_visit is a queue

