
CS30 - Neural Nets in Python

We will experiment with neural networks using a simple software package written in Python. You
can find the package at:

http://www.cs.pomona.edu/~dkauchak/classes/cs30/assignments/assign6/cs30neural.txt

Create a new file in Wing, copy the contents of this file and save it as cs30neural.py.

1 Usage

It is easy to use the package. First, make sure to import the contents of the package:

from cs30neural import *

Here is a simple example of creating, training, and testing a network that has two input nodes, five
hidden nodes, and one output node.

nn = NeuralNet(2, 5, 1)

nn.train(xor_training_data) #notice that xor_training_data is defined below

print nn.test(xor_training_data) # we can test on training, though it’s not ideal
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During training, we want to give the network labeled examples. An example, consists of a tuple of
two things:

(input, output)

All input and output values are specified as lists. For example,

([1.0, 1.0], [0.0])

represents an input output pair mapping input 1, 1 to output 0.

The training data is then a list of input-output pairs. For the classic XOR example, the training
data would be as follows:

xor_training_data = [([0.0, 0.0], [0.0]),

([0.0, 1.0], [1.0]),

([1.0, 0.0], [1.0]),

([1.0, 1.0], [0.0])]

The testing data is also presented in the same format.

If you apply the model to test data, you will get back a list of triples:

(input, desired-output, actual-output)

This format that is convenient for further analysis by computer, but it is difficult to read when
printed directly. You might want to print it one triple to a line:

for triple in nn.test(testing_data):

print triple

If you unpack the triple, you can ask more interesting questions, for example to print only the
differences between the desired and actual outputs:

for triple in nn.test(testing_data):

(input, desired, actual) = triple # unpack the triple

# remember outputs are lists, so we need to get the first item from the list

print desired[0] - actual[0]

If you want to evaluate just one input, you may do it with the evaluate function. To see the
output for a particular list of inputs, for example, you would write the following.

print nn.evaluate(input_list)
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2 The Neural Network Class

The software we’re playing with represents a neural network as an object of the NeuralNet class.
We’ve already seen instances of this, for example, lists are a class of objects.

The main difference between a list object and our neural network object is that there is no special
way for constructing neural network objects (to create lists we use the square brackets, []). Instead,
there is a special function called a constructor that takes some number of arguments (in our case,
three) and creates a neural network object. Once you have that object, you can call methods on it
just like you would any other object.

In the following summary, the neural network object is named nn. You may, of course, give your
networks any name you like.

nn = NeuralNet(num input, num hidden, num output) this calls the constructor and creates a
network with the specified number of nodes in each layer. The initial weights are random
values between −2.0 and 2.0. Notice that all of the other methods below are called on a
neural network object that has been created.

nn.evaluate(input) returns the output of the neural network when it is presented with the given
input. Remember that the input and output are lists.

nn.train(training data) carries out a training cycle. As specified earlier, the training data is a
list of input-output pairs. There are four optional arguments to the train function:

learning rate defaults to 0.5.

momentum ractor defaults to 0.1. The idea of momentum is discussed in the next section.
Set it to 0 to suppress the affect of the momentum in the calculation.

iterations defaults to 1000. It specifies the number of passes over the training data.

print interval defaults to 100. The value of the error is displayed after printInterval

passes over the data; we hope to see the value decreasing. Set the value to 0 if you do
not want to see the error values.

You may specify some, or all, of the optional parameters by name in the following format.

nn.train(training_data,

learning_rate=0.8,

momentum_factor=0.0,

iterations=100,

print_interval=5)

nn.test(testing data) evaluates the network on a list of examples. As mentioned above, the
testing data is presented in the same format as the training data. The result is a list of triples
which can be used in further evaluation.

nn.get IH weights() returns a list of lists representing the weights between the input and hidden
layers. If there are t input nodes and u hidden nodes, the result will be a list containing t
lists of length u.

3



nn.get HO weights() returns a list of lists representing the weights between the input and hidden
layers. If there are u hidden nodes and v output nodes, the result will be a list containing u
lists of length v.

nn.use tanh() changes the activation function from the sigmoid function to a commonly used
alternative, the hyperbolic tangent function.

3 Examples

The standard XOR example.

inputs output

0 0 0

0 1 1

1 0 1

1 1 0

Testing for “greater than.” The data come in two parts: the positive facts and the negative
ones.

inputs output

0.2 0.0 1

0.4 0.2 1

0.6 0.4 1

0.8 0.6 1

1.0 0.8 1

inputs output

0.0 0.2 0

0.2 0.4 0

0.4 0.6 0

0.6 0.8 0

0.8 1.0 0

Squaring a number.

input output

0.0 0.00

0.2 0.04

0.3 0.09

0.4 0.16

0.6 0.36

Voter preferences. This is training information. Voters were asked to rate the importance of
some issues and then to identify their party affiliation. The inputs are, from left to right, the
importance of budget, defense, crime, environment, and social security. They are ranked on a scale
of 0.0 to 1.0. The outputs are 0.0 for Democrat and 1.0 for Republican.
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inputs output

0.9 0.6 0.8 0.3 0.1 1.0

0.8 0.8 0.4 0.6 0.4 1.0

0.7 0.2 0.4 0.6 0.3 1.0

0.5 0.5 0.8 0.4 0.8 0.0

0.3 0.1 0.6 0.8 0.8 0.0

0.6 0.3 0.4 0.3 0.6 0.0

Unidentified. Can you determine the underlying rule?

inputs output

1 0 1 0 0 0 1

1 0 1 1 0 0 1

1 0 1 0 1 0 1

1 1 0 0 1 1 1

1 1 1 1 0 0 1

1 0 0 0 1 1 1

1 0 0 0 1 0 0

0 1 1 1 0 1 1

0 1 1 0 1 1 0

0 0 0 1 1 0 0

0 1 0 1 0 1 0

0 0 0 1 0 1 0

0 1 1 0 1 1 0

0 1 1 1 0 0 0

4 Theory and Implementation Details

For those that are curious, this section gives more detail on exactly how the neural network learning
algorithm works. This material goes beyond what I expect you to know for the class, however, I’ve
included it here in case you’re curious and would like to learn more.

Data values. Suppose that we have a network with t input nodes, u hidden nodes, and v output
nodes. The state of the network is represented by the values below.

I0 I1 . . . It−1 It

H0 H1 . . . Hu−1 Hu

O0 O1 . . . Ov−1

Notice that there is an extra input node and an extra hidden node. These are the bias nodes; It
and Hu always have the value 1.0. The bias nodes are handled automatically; you do not have to
account for them in the code you write.
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There are two matrices for weights. The value W IH
i,j is the weight assigned to the link between

input node i and hidden node j, and WHO
j,k is the weight between hidden node j and output node

k. The two matrices are of size (t+ 1) × (u+ 1) and (u+ 1) × v, respectively.

The change matrices keep track of the most recent changes to the weights. The values are CIHi,j
and CHOj,k , with notation analogous to the weights.

Activation function. The most commonly used activation function is the sigmoid function,
defined by σ(x) = 1/(1 + e−x). Its derivative given by the formula Dσ(x) = σ(x)(1 − σ(x)). The
values of the sigmoid function are always between 0.0 and 1.0.

The activation function is used to compute the value at the hidden and output nodes. Its derivative
is used to compute adjustments to the weights.

An alternative to the sigmoid function is the hyperbolic tangent, given by the formula tanh(x) =
(ex − e−x)/(ex + e−x) and its derivative is given by the formula Dtanh(x) = (1 − tanh2(x)). The
values of the hyperbolic tangent range between −1.0 and 1.0.

Computing the output values. When presented with t input values, the network is evaluated
by computing the hidden values and then the output values. The input values are assigned to I0
through It−1. (Remember that It is always 1.0.) The jth hidden value is

Hj = σ
(
I0W

IH
0,j + I1W

IH
1,j + . . .+ ItW

IH
t,j

)
= σ

(∑t
i=0 IiW

IH
i,j

)
.

Once we know all the hidden values, we can similarly compute the output values. The kth output
value is

Ok = σ
(
H0W

HO
0,k +H1W

HO
1,k + . . .+HuW

HO
u,k

)
= σ

(∑u
j=0HjW

HO
j,k

)
.

Training the network. We start with a collection of known input and output values. For a
single input-output pair, we evaluate the input to obtain the actual output values O0 through
Ov−1. We compare these values with the desired output values Q0 through Qv−1 to obtain the
“error” or “required change” at each output node. The change at output node k is

δOk = (Qk −Ok)Dσ(Ok).

Notice that the change is multiplied by the derivative of the activation function at the actual output
value.

We apportion the “responsibility” for the error at an output node to the hidden nodes according
to the weights. The change at hidden node j is
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δHj =
(
WHO
j,0 δO0 +WHO

j,1 δO1 + . . .+WHO
j,v−1δ

O
v−1

)
Dσ(Hj)

=
(∑v−1

k=0W
HO
j,k δOk

)
Dσ(Hj).

The next step is to adjust the weights between the input and hidden layer, using the errors in the
hidden layer. The weight W IH

i,j becomes

W IH
i,j + LδHj Ii +MCIHi,j .

The weight is adjusted by two terms. One involves the learning rate, L. It is usually a value
between 0 and 1. In our software, the default value is 0.5. A higher rate may make the learning go
faster, but it may also take too large steps causing the weights to gyrate and never settle down.

The other term involves the momentum factor,M . It tries to capitalize on the idea that if we moved
a weight in one direction the last time, it may speed up the learning if we moved it a little further
in the same direction this time. The momentum factor is usually rather small; the default value
in our software is 0.1. In order to use the momentum factor, we have to remember the previous
change. We record it in the change matrix after updating W IH

t,u , by setting CIHi,j to

δHj Ii.

Finally, we update the weights and changes between the hidden and output layers in the same
manner. The weight WHO

j,k becomes

WHO
j,k + LδOk Hj +MCHOj,k ,

and the change CHOj,k becomes

δOk Hj .

Computing the error. The error for one evaluation is defined by

(
(Q0 −O0)

2 + (Q1 −O1)
2 + . . .+ (Qv−1 −Ov−1)

2
)
/2

The whole training cycle described above—evaluate the output, compute the errors, and adjust
the weights and changes—is executed for each element in the training data. The error for one pass
over the training data is the sum of the individual errors. The formulas for adjusting the weights
are designed to minimize the sum of errors. If all goes well, the error will decrease rapidly as the
process is repeated, often with thousands of passes across the training data.

Variations. Our software works with only the most common type of neural network. There are
many variations, including these:
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• Some formulations omit the bias node in the hidden layer; others omit both bias nodes.

• Our software connects each node in one layer to each in the succeeding layer; sometimes
some of the connections are omitted. One can argue that it is not necessary to leave out a
connection; ideally, the learning process will discover that the weight is zero. But if we know
something about the network and the significance of the nodes, we may know a priori that
the weight is zero, and omitting the connection will speed up the learning process.

• Occasionally, there is more than one hidden layer.

• Sometimes there are edges from the output layers back to the input or hidden layer. These
add cycles which give the network a form of “memory” in which one calculation is influenced
by the previous calculation.
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