
CS30 - Assignment 4

Movie Hangman

Due: Friday 2/19 at 6pm

For this assignment, you will be implementing a text-based version of hangman. There are many
variants of the program, so follow the specifications closely.

Make sure that you read through this whole handout first before getting started. I’ve given an
overview of how to proceed and then some hints near the end.

1 Playing the game

When you “run” the program (press the green button in Wing), the game should immediately start.
The program will randomly pick a movie from our movie database (movieDB in the file movies.py,
see the last assignment if you need a copy of this file) and then give the user some basic information
about the movie to help them guess:

1

*** Movie Hangman ***

Year: 1988

Director: Michael Chrichton

Starring: Jamie Lee Curtis

Specifically,

1. The year the movie was released

2. The director of the movie

3. And one of the actors/actresses that was in the movie (in our case, just the first one listed in
the movie database)

After this has been displayed, the program should then display the general hangman output:

Guessed letters:

Movie: - ---- ------ -----

Guess a letter:

This display has two main components:

1. Guessed letters: Shows the letters the player has guessed so far. The letters will be
separated by a space and should be all capitalized. When the game starts, no letters have
been guessed, so this area is blank. The letters should be displayed in alphabetical order.

2. Movie: This shows the movie that the player is trying to guess. Each dash represents a letter
in the movie (we’ll use dash not underscore since it allows you to see the separate characters).
The spaces between words are shown to help the person playing figure out how many words
are in the movie. The movie above is four words, with the first word being a single letter, the
second word four letters, etc.. As the user plays, the correctly guessed letters will be filled in.

The program runs, by continually prompting the user for the next letter. When the user enters a
letter, there are just two possible cases:

• If the letter does not occur in the movie to be guessed, then that letter should be added to
the list of guessed letters and then the display is shown again, prompting the user for another
letter.

• If the letter does occur in the movie, then that letter should be added to the list of guessed let-
ters and the underscored word is updated with all occurrences of that letter in the appropriate
place. Finally, the user is then prompted for another letter.

2

The following transcript shows these different situations happening as the game is being played:

Guessed letters:

Movie: - ---- ------ -----

Guess a letter: e

Guessed letters: E

Movie: - ---- ----E- -----

Guess a letter: a

Guessed letters: A E

Movie: A ---- -A--E- -A--A

Guess a letter: t

Guessed letters: A E T

Movie: A ---- -A--E- -A--A

Guess a letter:

In the first two guesses the letter was in the movie, but in the third it was not.

The game ends when the user fills in all of the dashes in the word. The movie is displayed along
with the number of guesses that it took the user.

Guessed letters: A C D E F H I L S T W

Movie: A FISH CALLED WA-DA

Guess a letter: n

You win!

The movie was: a fish called wanda

You guessed it with 12 guesses

2 Demo

To help you understand how the game works, I’ve made a demo version available.

3

On mac:

- Go to:

http://www.cs.pomona.edu/~dkauchak/classes/cs30/assignments/assign4/

- Download mac.hangman.zip

- Unzip the file. This should create a directory called hangman.

- Inside this folder, double-click on the file hangman. This should start the hangman game.
Note: your computer may give you a hard time about trying to use an “app” that you’ve
downloaded. If it does, see the instructions below about how to provide an exception:

http://support.apple.com/kb/PH14369

On windows:

- Go to:

http://www.cs.pomona.edu/~dkauchak/classes/cs30/assignments/assign4/

- Download windows.hangman.zip

- Unzip the file. This should create a directory called hangman.

- Inside this folder, double-click on the file hangman.pyc. This should start the hangman game.

3 High-level Implementation

Your program will be keeping track of two key pieces of information.

First, the dashed version of the movie that is partially filled in. For this program, we’re going to
represent this as a list of strings. For example, in the transcript shown above, the list would start
out as:

[’-’, ’ ’, ’-’, ’-’, ’-’, ’-’, ’ ’, ’-’, ’-’, ’-’, ’-’, ’-’, ’-’, ’ ’, ’-’, ’-’, ’-’, ’-’, ’-’]

corresponding to each letter (including spaces) in the move A FISH CALLED WANDA.

As the user guesses letters correctly, this will be updated. For example, after the user guesses ‘E’
and ‘’A’ this list would then be:

[’a’, ’ ’, ’-’, ’-’, ’-’, ’-’, ’ ’, ’-’, ’a’, ’-’, ’-’, ’e’, ’-’, ’ ’, ’-’, ’a’, ’-’, ’-’, ’a’]

which we see displayed as:

4

Movie: A ---- -A--E- -A--A

The second piece of information that you’ll need to keep track of is the list of letters that have
been guessed so far. Again, we’ll just use a list of strings to keep track of this.

The program then revolves around:

1. Display the current state of the game to the user and get the next letter.

2. Check to see if the letter is in the word. If it is, update the list with the dashed representation.

3. Repeat.

Make sure you understand the basic setup of how we’re going to tackle this problem!

4 Implementation requirements

http://www.cravingtech.com/best-cyanide-and-happiness-comic-strips.html

Besides following the game specification described above, your program MUST meet the following
requirements:

• Your program must contain at least the following four functions:

5

– generate underscore: which should take the movie (as a string) as a parameter and
return a list representing the underscored version of the word where each character in
the movie is represented as a dash (‘-’), except for spaces, which are kept as spaces.

– list to string: which takes a list of strings as a parameter and returns the letters in
the list as a single string, with each letter capitalized and separated by a space.

– insert letter: which takes three parameters: a letter (as a string), a list of strings
representing the current dashed version that the user has filled in so far and, the movie
that the user is trying to guess (as a string). This function should update the current
dashed version of the movie assuming the user guessed letter AND assuming that the
letter is in the movie. This function can either be a mutator method and update the
dashed list (and then not return anything) or it can return a new list.

Here would be the output of the function if it returned a new list:

>>> insert_letter("k", [’-’, ’-’, ’n’, ’g’, ’ ’, ’-’, ’-’, ’n’, ’g’], "king kong")

[’k’, ’-’, ’n’, ’g’, ’ ’, ’k’, ’-’, ’n’, ’g’]

– play hangman: which takes no parameters This function should then initiate the hang-
man game and continue to run until the game finishes. You should include a single
call to this at the very end of your file (outside of any functions). This will cause the
hangman game to start immediately when the program is run.

• Your program should properly use the above four functions.

• Your program should immediately start playing the game when your program is run.

• Your program should be able to handle upper-case or lower-case letters as input.

• The guessed letters shows should all be capitalized and shown in alphabetical (hint:, sorted)
order.

5 One path to implementation

There are many different ways to implement your program, but here is one suggestion:

• Write the generate underscore function. The only tricky thing here is that you need to do
something different depending on whether the letter is a space or not. Remember, we can
iterate over the characters in a string using a for loop.

• Write the list to string function. This should be very similar to list functions you’ve
written previously (or that we’ve looked at in class). There is a string method called “upper()”
that might be useful.

• Write the insert letter function. There are many ways to do this, so think about how
you’d like to approach it. The key observation here is that the movie to be guessed and the
list representing the current dashed version of the movie are of the same length and there is
a direct correspondence between the two.s

6

• Write play hangman incrementally, testing each step before moving on to the next:

– Start by having it pick a random movie entry and then display the corresponding infor-
mation. There is a function called choice in the random module that might be useful,
though there are many ways to do this. Also, there is a method of the string class called
title that will help your output look nicer :) Note, when you’re developing, feel free to
print out other information (like the word you’re supposed to be guessing) to help you
debug your program. Just make sure to remove this information before you hand it in.

– Add the user input and add the letter that the user guessed into the underscored word
appropriately (your functions from above should be useful).

– Add in functionality to keep track of the letters the user has guessed and to print out
the letters guessed in sorted order.

– Add the functionality to make sure that the user continues to be prompted to enter a
new letter as long as the letter input has already been guessed.

– End the game when the user gets the right answer.

– Print out the appropriate information for after the user finishes the game.

Here are some things to think about:

• How do the four functions fit into the program? Each of them should play a role in your
program and will make your life easier and the program simpler.

• If you’re confused about the behavior of your program, put in more print statements to
print out variables, etc. For example, it can be very useful to print out the list holding the
underscored word as you play the game so you can see what the state looks like. Additionally,
you can cheat and print out what movie you’re trying to guess so that you don’t actually
have to play the game when you’re debugging.

• Remember, if your program hangs when you run it, you probably have an infinite loop. If
your run Wing in debug mode (two icons over from the green run arrow), you will see more
information and it will often help you figure out where the infinite loop is.

• This program should not be a lot of code, but some of it can be tricky. Make sure you think
about how you want to accomplish each step. Sometimes it helps to write down what you
want to do in English (i.e. pseudocode), focusing on the logic, and then translate this into
code.

6 Extra credit

You may add any of the following additions to the program for extra credit. Make sure to put in
comments at the top of the file indicating any extra credit that you implement.

7

• [.5 points] Currently, if the user guesses the same letter twice it will appear in the guessed
letters twice. Make it so that if the letter has been guessed before, you 1) tell the user this
and then 2) don’t add it to the guessed letters.

• [0.5 point] Keep track of how many letters the player guess that were NOT in the movie.
Display this as an additional stat when the game finishes.

• [1 point] Right now, the user can guess as many times as they want and will therefore always
win eventually. Add a feature where you limit the number of wrong guesses that the player
can make. Display these as they play, either as a number or some other visual representation
(e.g. asterisks for each remaining guess). When the user runs out of guesses, the game should
end with a different message.

7 When you’re done

Make sure that your program is properly commented:

• You should have comments at the very beginning of the file stating your name, course, as-
signment number and the date.

• You should have comments delimiting the three problems.

• Each function should have an appropriate docstring.

• Include other miscellaneous comments to make things clear.

In addition, make sure that you’ve used good style. This includes:

- Following naming conventions, e.g. all variables and functions should be lowercase.

- Using good variable names.

- Proper use of whitespace, including indenting and use of blank lines to separate chunks of
code that belong together.

- Make sure that none of the lines are too long, i.e. cross the red line in Wing.

Submit your .py file online using the courses submission mechanism.

8

Grading

points

each time a random movie is picked from the file 1
movie information is displayed appropriately 2
initial underscored word shown correctly 2
each guess is inserted appropriately in underscored movie 3
guessed letters correctly displayed 2
guess letters are updated appropriately 1
game ends correctly when movie is guessed 2
prints out game winning information appropriately 1
handles lower and uppercase letters 1
program starts automatically on run 1
followed function specifications 4

Comments, style 3

extra credit 2

total 23 (+2)

http://xkcd.com/804/
(All the other hangman comics seemed a bit too morbid...)

9

