
CS201 - Assignment 3, Part 1

Due: Friday February 28, at the beginning of class
One of the keys to writing good code is testing your code. This assignment is going to introduce
you and get you setup to one framework for making this easier called JUnit.

1 JUnit

A “unit” test is a test that tests a very small, portion of code, often some functionality of a single
function/method. JUnit is a framework for that allows you to write meaningful tests, run them
regularly and easily identify which parts of your code might be problematic.

JUnit comes installed with Eclipse already. To make sure you can run JUnit properly, create a
new Java project called “assign3.1”. Inside, that create a class called Simple and copy and paste
the code below into that class:

public class Simple {

private boolean simple;

public Simple(boolean b){

simple = b;

}

public boolean isSimple(){

return simple;

}

public String toString(){

String returnMe = "";

if(simple){

return "I’m simple";

}

return returnMe;

}

}

Take a look at this class and make sure you understand what it’s doing.

Now, we’re going to create a few tests to check to see that this class is doing what we expect it to
be doing.

1

To create a new set of tests, right click on your “assign3.1” project and then select New → JUnit

Test case. This should pop up a dialog box that looks something like:

Under the “Name” field, put the name “SimpleTest” (like I’ve done in the screenshot above). Then
press Finish. When you do, you should see a window pop-up:

2

Click OK.

You should now see a class called SimpleTest that looks something like:

A unit testing class is like a normal Java class, however, it does not have a constructor and the
methods that we write are treated as tests. Tests are public void methods that are annotated
above the method with “@Test”. We then can use special method calls inside these methods that
check to see that answers are what we expect them to be. These are called “assert” statements,
because they assert what we think should be true if everything is functioning properly.

Delete the method “test()” that is auto-generated for us in the SimpleTest class and then copy
and paste these two tests:

@Test

public void testSimple() {

Simple s = new Simple(true);

Simple s2 = new Simple(false);

assertTrue(s.isSimple());

assertFalse(s2.isSimple());

}

@Test

public void testSimpleToString() {

Simple s = new Simple(true);

Simple s2 = new Simple(false);

assertEquals(s.toString(), "I’m simple");

assertEquals(s2.toString(), "I’m not simple");

}

The first test checks to make sure that newly created Simple objects remember their state properly
and then the second test checks to make sure that toString is working correctly. These tests use
three different assert statements:

– assertTrue: takes a single parameter that is a boolean and checks to make sure that it is

3

true. If the argument is not true (i.e. false), then the test that contains the assert statement
will fail.

– assertFalse: just like assertTrue except passing is false and failing is true.

– assertEquals: takes two parameters and checks to make sure that they are equal to each
other. If they are not, then the test that contains the assert statement will fail.

Should these tests pass? To run these tests, just click on the the green run arrow. When you do,
you’ll see the JUnit window open where the package explorer is (generally on the left) and should
see:

The red bar indicates that one or more of your tests failed :(If you look below you can see that
the testSimple test failed (green check mark), but the testSimpleToString check did not pass.
If you double-click on this failing test it will take you to the assert statement that is failing.

Fix the Simple class so the toString method does the right thing, that is, returns “I’m not simple”
when it is constructed with false. Then, go back to the SimpleTest class and run it again and
you should see that it passes:

If you want to see all of the individual tests passing, you can click the arrow to the left of
SimpleTests:

4

The power of JUnit is that you can run these tests over and over again as you add new code. This
makes sure that the new things you add didn’t break anything that was working already!

2 Your Turn

• Copy and paste your WarmUp class from Assignment 1 into your Assign3.1 project.

• Create a new JUnit test class call WarmUpTest.

• Write at least two test methods that test different methods from your WarmUp class. Remem-
ber, to call static methods in another class you write the class name then a dot and then the
name of the method. For example, to call the isOdd method you would write WarmUp.isOdd.

3 What to submit

Generate a jar file from your Assign3.1 project and submit that online as “3.1”.

5

	JUnit
	Your Turn
	What to submit

